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Preface

This textbook offers a succinct and self-contained introduction into general
relativity and its main areas of application: compact objects, gravitational
waves and cosmology. It has evolved from lecture courses I have taught at the
University of Utrecht since 1990. The book is intended for advanced under-
graduate and beginning graduate students in physics and astrophysics.

The past decades have seen spectacular new developments in our knowl-
edge of cosmology, the physics of compact objects and in high precision gravity
experiments. As a result, relativistic astrophysics and cosmology have become
a very attractive element in the (astro)physics curriculum, and there is a va-
riety of excellent textbooks. But most of these are either too advanced, too
elementary, or too voluminous for my purpose, or they do not cover all top-
ics. My object in writing this book has been to provide a concise text that
addresses general relativity and its applications homogeneously, at an inter-
mediate level, conveying a maximal physical insight with a minimal amount
of formalism. It is often a revelation for students to see that it is possible, at
least for the range of subjects addressed here, to cut down the usual tangle of
math to manageable proportions without watering down the discussion. My
guiding principle has been to keep only what is really useful, but that does
not mean that it is always the more difficult topics that have been eliminated.
For example, I kept very little formal tensor calculus as it is not really needed
– only the basics are indispensable. But variational calculus is used exten-
sively because it is by far the simplest way to compute Christoffel symbols
and therefore very useful.

The approach is theoretical, but the text is interlaced with discussions
of observational, instrumental and historical aspects where appropriate. The
book is divided into (1) preparatory material: special relativity, geometry of
Riemann spaces, and general relativity, (2) Schwarzschild metric and appli-
cations: classical tests, binary pulsars, gravitational lenses, neutron stars and
black holes, (3) experimental gravity: gravitational waves and their detec-
tors, Gravity Probe B, and finally (4) cosmology: Robertson-Walker metric,
evolution of the universe, observational cosmology, and inflation. Due to the
self-imposed restrictions several topics had to be skipped. But in view of their
current interest, extra attention has been given to the operation of interfer-
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ometer detectors for gravitational waves, to the Gravity Probe B mission, and
to structure formation in relation to the results of the Wilkinson Microwave
Anisotropy Probe (WMAP).

The reader is supposed to be familiar with linear algebra and calculus,
ordinary differential equations, and with elementary thermal physics, electro-
dynamics, special relativity and quantum mechanics - in other words, the basic
education of advanced physics undergraduates. Prior knowledge of differential
geometry, general relativity and astrophysics is helpful but not required. The
necessary mathematical techniques are introduced informally, following geo-
metrical intuition as much as possible. The admirable texts of Dirac (1975),
Price (1982) and Schutz (1985) have been a source of inspiration for me in
this regard. And the astrophysical concepts are likewise briefly introduced to
a level where they should be intelligible for physics students. There are about
145 exercises with hints for their solution. These exercises are an indispens-
able element in helping students to come to grasp with the subject matter,
and to train them to solve elementary problems independently. In my expe-
rience 40 − 45 lectures (45 min.) of oral instruction would suffice to expound
all material, excluding tutorials for exercises.

References to the literature are eclectic rather that complete, and appear
as footnotes in the text. General references (mostly textbooks) are given in
Appendix A. The finiteness of the alphabet did cause some problems of nota-
tion. The reader is alerted to my propensity for the symbol a. There are many
different constants a in the text, but confusion is unlikely as they have only a
local meaning. Likewise h has three different meanings, (H0/100, the constant
of the motion r2ϕ̇ in the Schwarzschild metric, and Planck’s constant).

The cover picture is a still life by the Dutch artist Olav Cleofas van
Overbeek entitled Black bowl on yellow plane (2002). Its simplicity and well-
balanced design epitomize the rotational and translational symmetries that
are so ubiquitous in physics, and in this book embodied in the Schwarzschild
metric and the Robertson-Walker metric, respectively. The cartoons oppo-
site to the chapter headings have been drawn by Roeland van Oss, and I am
grateful for his permission to reproduce them here. The drafting of the figures
reflects the technical developments of the period, and began on rice paper, to
proceed entirely by electronic means in the end. I wish to thank Hans Braun,
Arjan Bik, and in particular Artur Pfeifer for their assistance in this area.
There are instances where we have been unable to trace or contact the copy-
right holder of some of the reproduced figures. If notified the publisher will
be pleased to rectify any errors or omissions at the earliest opportunity.

I want to express my gratitude to Jan van der Kuur for his help in solv-
ing my Latex problems, and to Constance Jansen who generously provided
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library assistance. Lucas van der Wiel has helped me with the first English
translation. In the course of the years that led up to this book I have ben-
efitted from discussions and correspondence with many colleagues. I cannot
name them all, but I do wish to thank Bram Achterberg and Ed van den
Heuvel and several unknown referees who read sections of the manuscript. I
am in particular indebted to my friend and colleague John Heise who since
many years is my discussion partner on matters relativistic and other. His
influence is pervasive throughout the book. And last but not least, I should
thank all the students who continually forced me to improve the presentation
of the material, from my first notes in 1990 (to which I think in slight em-
barrassment), to the present text which is, I hope, of some use to the reader.

Utrecht, Peter Hoyng
February 2005
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1

Introduction

From the earliest days of history mankind has shown an avid interest in the
heavenly phenomena, and astronomers have good reasons to claim that theirs
is the oldest profession of the world but one. This interest arose largely from
practical needs. In a differentiated society where rituals play an important
role it is useful to know the direction of the North and to be able to pre-
dict the turn of the seasons, days of festivities, and so on. Astronomy was still
tightly interwoven with religion and astrology. The Babylonians had an exten-
sive knowledge of practical mathematics and astronomy. The two important
issues were the calendar (i.e. the question of the relative length of the year,
months, days and the time of important feast-days), and the ephemeris (the
positions of the Sun, Moon and the planets, lunar and solar eclipses, etc., as
a function of time). In parallel to this practical knowledge, a whole variety
of mythological ideas developed about the origin of the world around us. It
is a peculiar coincidence that the Hindus arrived at time scales close to what
we now think to be the age of the universe. The Hindus believed in a cyclic
universe. It was created by Brahma, and exists in an orderly state for a period
of one Brahma day (4.32 × 109 year).1 At the end of the day Brahma will go
to rest, and the universe will turn into chaos. Light, orderly motion and life
only return when Brahma wakes up again. Ultimately Brahma himself will
die, and the universe and the Hindu pantheon will perish with him. A new
Brahma will then be born, and the endless cycle of creation and destruction
will repeat itself.

The Greek were the first to develop rational concepts about the world.
According to Pythagoras and his followers (ca. 500 B.C.) the Earth is spheri-
cal. The Sun, Moon and planets reside on concentric spheres revolving around
the central fire Hestia. The stars are located on the outermost sphere. The
idea that the Earth is not at the centre of the universe is therefore very
old. Eudoxus (about 408-355) and Aristotle (384 - 322) developed a spheri-
cal world model consisting of a great number of concentric spheres with the

1 Thomas, P.: 1975, Hindu religion, customs and manners, Taraporevala Sons &
Co, Bombay.



2 1 Introduction

Earth located at the centre. Each celestial body (Sun, Moon, and the five
known planets) has a set of spheres associated with it, and is located on the
innermost sphere of its own set. Each sphere of a set revolves around an axis
attached to the sphere directly within. Because the axes of the spheres are
not aligned, the apparent motions of the planets could be reproduced approx-
imately. To the Greek, esthetic considerations played an important role, and
this trend has persisted in physics to this day because it is often productive
(‘a theory is plausible because it is elegant’). Religious aspects played a role
as well, and this has also lingered on for a very long time (cf. for example
Newton). And haven’t we all at times been overwhelmed by the beauty of the
night sky – a strong emotional experience bordering to a religious experience?
In a letter to his brother Theo, Vincent van Gogh wrote ‘.. It does not prevent
me from having a terrible need of – shall I say the word – of religion, then I
go outside in the night to paint the stars ..’ 2

Based on Babylonian observations Hipparchus (ca. 190 - 125) catalogued
some 850 stars and their positions. He also invented the concept of epicycles
to explain the brightness variations associated with the apparent motion of
the planets. It should be kept in mind that in those days stars and plan-
ets were regarded as independent light sources of a divine nature, and that
only the Earth and the Moon were thought to be lit by the Sun. The insight
that the Earth and the planets are actually comparable objects came much
later. Geocentric world models with epicycles were gradually refined. Ptolemy
(87 − 150) recorded his version in the Almagest3, a summary of ancient as-
tronomy and one of the most influential texts in the development of Western
thinking. Much earlier, Aristarchus (ca. 310 − 230) had proposed a simpler,
truly heliocentric model with the Earth rotating around its axis and around
the Sun. He was therefore 1800 years ahead of his time, but his ideas did not
prevail. The history of astronomy would arguably have been quite different if
they had, and this example may serve as a consolation for those who feel that
the world does not hear their voice. The heliocentric theory became gradually
accepted only after the publication of the work of Copernicus in 1543. For
more information on these matters see Koestler (1959), Dijsterhuis (1969),
Pannekoek (1989), Evans (1998), and Bless (1995).

The transition from a geocentric to a heliocentric world model meant that
mankind had to give up its privileged position at the centre of the universe.
This development continued well into the last century, one might say, until
Hubble proved in 1924 that the spiral nebulae are actually galaxies located
far outside our own galaxy, as Kant had already postulated in 1755. As a
result, our galaxy became one among many. This led to the formulation of
the cosmological principle, which says that our position in the universe is in
no way special – the complete antithese of the geocentric view.

2 J. van Gogh-Bonger (ed.), Verzamelde brieven van Vincent van Gogh, Wereld-
bibliotheek, Amsterdam (1973), Vol III, letter 543, p. 321.

3 From the Arabic-Greek word Kitab al-megiste, the Great Book.
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Mercury

Jupiter

Mars

Venus

Sun

Earth

Saturn

Fig. 1.1. Ptolemy’s world model, very much simplified and not to scale. The centres
of the epicycles of the inner planets are on the Sun-Earth line, while the radii of
the epicycles of the outer planets run parallel to this line. The innermost sphere
around the Earth (the ‘sublunary’) belongs to the Moon. The stars are located on
an outermost sphere (not shown). The whole system operates like a clockwork as
the Sun moves around the Earth. To the modern eye, a strange aspect of the model
is that the motion of the other planets is connected with the motion of the Sun
around the Earth. This coincidence is removed in Copernicus’s heliocentric model.
After Dijksterhuis (1969).

1.1 Special relativity (SR)

Modern cosmology is based on the theory of general relativity (GR), which is
a natural generalisation of the theory of special relativity (SR). This section
recapitulates the main ideas of special relativity, that is, physics in the absence
of gravity. For a more thorough discussion we refer to Schutz (1985). We
consider space and time to be a 4-dimensional continuum, called Minkowski
spacetime. A (global) co-ordinate system in Minkowski spacetime is usually
called a reference frame or just a frame. A point P with co-ordinates {xα} is
called an event. The motion of a particle can be represented by its worldline,
Fig. 1.2. SR is based on two postulates:

- The principle of relativity, which states that the laws of physics must have
the same form in every inertial frame.

- The speed of light has a constant value c in all inertial frames.
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P

Q

V

worldline{ xa + Dxa
 }

{ xa
 }

{ xi
 }

t
or

x0 = ct

Fig. 1.2. The Minkowski spacetime, with events P and Q, a vector V connecting
these events, and the worldline of a particle.

An inertial frame is a rigid system of spatial co-ordinates with synchronised
clocks to measure t, in which test particles on which no forces are exerted
move uniformly with respect to each other. An example of an inertial frame is
a frame that does not move (no rotation, no translation) with respect to the
distant galaxies. Inertial frames in SR are global, and they all move uniformly
with respect to each other. In this section we admit only inertial frames.
The principle of relativity is very old and goes back to Galilei. The second
postulate is Einstein’s innovative step, which he based, among other things, on
Michelson and Morley’s experiment which demonstrated the impossibility of
measuring the velocity of the Earth with respect to the ether. The consequence
is that invariance for Galilean transformations, as e.g. Newton’s laws possess,
no longer applies.

Simultaneity exit

SR often evokes major conceptual problems due to the fact that some very
deeply rooted (Newtonian) ideas about space and time are not consistent
with observations. Paramount among these is the fact that simultaneity has
no longer an invariant meaning. Consider an inertial observer W , who tries to
locate the events in his co-ordinate system (x, t) that are simultaneous with
the origin x = t = 0, see Fig. 1.3, left. W argues: all events P that reflect
light such that the moments of emission and detection are symmetrical with
respect to t = 0 (emission at t = −t0, detection at t = t0 for all t0). W ’s
conclusion is: all events on the x-axis. Now consider observer W who moves
uniformly to the right in W ’s frame, Fig. 1.3, right. At t = 0, W and W are
both at the origin. W ’s worldline serves as the t-axis of his frame, and t = 0 is
chosen at the common origin. W repeats W ’s experiment, but since the value
of c is frame-independent, W identifies a different set of events, effectively his
x-axis, as being simultaneous with the origin. The x-axis lies tilted in W ’s
frame, and the tilt angle depends on W ’s velocity. Different observers W will
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worldline Wworldline W

P

P

x

t

x

-t0

observer W observer W

t0

-t0
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t
worldline W

x
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Fig. 1.3. As explained in the text, an invariant definition of simultaneity is impos-
sible in SR.

A

B

B

nucleus
A

B

Fig. 1.4. Thomas precession of an electron orbiting a nucleus explained in the spirit
of Fig. 1.3. After Taylor and Wheeler (1966).

therefore disagree as to which events are simultaneous with the origin.

Inaccurate reasoning in SR has led to many paradoxes (clock paradox,
car-in-garage paradox). A vivid illustration of how drastically SR turns our
perception of space and time upside down is the Thomas precession of the
spin of an electron in an atom, a purely special-relativistic effect. Fig. 1.4
shows the classical orbit, approximated by a polygon. The heavy line is the
projection of the spin axis on the plane of the orbit. After the electron has
rounded a corner, its spin axis has turned. An analysis of what happens during
the acceleration at the corner can be avoided by replacing electron A there
by electron B, demanding that the spin vectors are aligned in a frame mov-
ing with A (A’s rest-frame; right figure). But in the laboratory frame these
orientations are different – this is a consequence of the relative meaning of
simultaneity as explained in Fig. 1.3. Note that the electron is subject to
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A

x

t

A

x

t

A’s future

A’s past

lightcone of A

A’s past

before SR after SR

elsewhere elsewhere

A’s future

Fig. 1.5. The causal structure of Minkowski space. In SR every event A has its
own invariant light-cone that divides Minkowski space into a past, a future and an
elsewhere.

an additional precession due to electromagnetic interaction with the nucleus.
The question arises whether a gyroscope in orbit around the Earth will also
exhibit a precession. At the time of writing, the Gravity Probe B mission is
performing the experiment, see further Ch. 8.

Lorentz metric

An important concept in SR is the interval ∆s2 between two events P and Q
with co-ordinates xα and xα + ∆xα:

∆s2 = c2∆t2 − ∆xi∆xi = ηαβ ∆xα∆xβ ; (1.1)

ηαβ =

⎛
⎜⎜⎝

1 ∅
−1

−1
∅ −1

⎞
⎟⎟⎠ . (1.2)

Notation:
x0 = ct , ∆t2 ≡ (∆t)2 . (1.3)

Relation (1.1) defines the metric, i.e. the distance between two events in
Minkowski space, and is called the Lorentz metric. Here and everywhere else:
summation convention ; Roman indices run from 1 to 3 and Greek indices
from 0 to 3. Note that we adopt the signature : 1,−1,−1,−1.4

4 The sign convention is important as it leads to sign differences everywhere, but
it has of course no influence on the physics. The advantage of the present choice
is that for timelike geodesics the curve parameter p, the interval length s and
proper time τ are proportional, see § 2.5.
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m > 0

m = 0

particle

photon

Fig. 1.6. The worldline of a particle with nonzero mass is located inside the light-
cone, that of a photon is tangent to it.

Two events connected by a light ray have ∆s2 = 0, irrespective of their
spatial distance. No matter how enormous the distance of some objects in
the universe may be, the interval ∆s2 between them and the telescope is
zero. The value of ∆s2 is also invariant: if some other observer W computes
∆s2 ≡ ηαβ ∆xα∆xβ in his rest-frame (i.e. in a comoving inertial frame), the
value he finds is equal to ∆s2 (proof: e.g. Schutz (1985), p. 11). This leads to
an important relation between events, see Fig. 1.5. Prior to the advent of SR,
all events were located either in the future, in the past, or they were simulta-
neous with a given event A. In SR there is A’s light-cone ∆s2 = 0 that divides
Minskowski space into a past and a future (with which A can have causal re-
lations), and an ‘elsewhere’ (with which A cannot have any interaction). This
division is independent of the reference frame because ∆s2 is invariant. Hence
we can speak of the light-cone. The worldline of a particle with non-zero mass
is always located inside the light-cone, see Fig. 1.6. Depending on the value
of ∆s2, the vector connecting events P and Q in Fig. 1.2 is called a

timelike vector : when ∆s2 > 0 ;
null vector : when ∆s2 = 0 ;
spacelike vector : when ∆s2 < 0 .

⎫⎬
⎭ (1.4)

The proper time interval ∆τ between two (timelike connected) events on the
worldline of a particle is defined as:

c2∆τ2 ≡ ∆s2 = c2∆t2 − ∆xi∆xi . (1.5)

For positive ∆s2 we may define ∆s ≡ (∆s2)1/2 and proper time intervals
as ∆τ = ∆s/c. Proper time intervals are invariant because ∆s2 is. By
transforming to the rest-frame of the observer W , so that ∆xi = 0, we
find that ∆τ2 = ∆t

2, which shows that the proper time is just the time
of a clock moving with the observer (his own wristwatch). Now substitute
∆xi = (∆xi/∆t)∆t = vi∆t in (1.5) and compute the limit:

dτ =
√

1 − (v/c)2 dt , (1.6)
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B

A

clock
paradox
Dt1 > Dt2

Dt2Dt1

Fig. 1.7. The clock paradox. Two clocks moving from event A to B along different
worldlines indicate different readings ∆τ for the duration of the trip.

where v is the speed of the particle (the ordinary 3-velocity). The proper time
∆τ elapsed between two events can be found by integrating (1.6) along the
worldline connecting the events. The answer will depend on the shape of the
worldline, which leads to the famous clock paradox, Fig. 1.7, explained in
detail in Schutz (1985), § 1.13.

Lorentz transformations

The co-ordinates xα and xα of an event with respect to two different inertial
frames can be expressed into each other by means of a Lorentz transformation:

xα = Lα
ν xν . (1.7)

The Lα
ν are constants that depend only on the relative velocity v of the two

frames. Relation (1.7) is a linear transformation that leaves ∆s2 invariant. If
the co-ordinate axes (x, t) and (x, t) are defined as in Fig. 1.3 the transforma-
tion is

Lα
ν =

⎛
⎜⎜⎝

γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ (1.8)

with β = v/c and γ = (1 − β2)−1/2. The mathematical formulation of SR
proceeds in terms of 4-vectors and tensors, that transform according to a
Lorentz transformation. The trick is to try and write the laws of physics as
relations between scalars, vectors and tensors only, because in that case they
are automatically invariant for Lorentz transformations.

Lorentz transformations are global. In GR we allow arbitrary curvilinear
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W

d �

v Dt

W

Fig. 1.8. An Einstein clock consists of photons traveling between two parallel mir-
rors at a distance d; the time for a round trip ∆t = 2d/c serves as the time unit. This
clock will run slower if it moves with respect to the observer because the photons
traverse a distance � > d while c is constant. The merit of this example is that the
time dilation is immediately obvious, but it is not so evident that it is impossible to
eliminate the effect by using another clockwork. However, it can be shown that the
effect is quite general and independent of the way the clock is constructed.

reference frames. As we shall see in § 2.3, the effect is that the global Lorentz
transformation is replaced by a mesh of local Lorentz transformations that
are different at each position in spacetime.

Exercise 1.1: Explain the time dilation with the help of Einstein’s clock,
Fig. 1.8:

(∆t)measured by W =
(∆t)measured by W√

1 − v2/c2
. (1.9)

Hint: W observes W ’s clock as it travels to the right at velocity v. W mea-
sures ∆t = 2�/c, and �2 = d2 + (v∆t/2)2 = d2 + (v�/c)2, from which
� = d/

√
1 − (v/c)2, and (∆t)measured by W = 2d/c.

Exercise 1.2: Below relation (1.6) it was said that the proper time elapsed
between events depends on the worldline connecting the two events. Doesn’t
that contradict the fact that dτ is invariant?

Hint: In a given set of dτ , each dτ is invariant under co-ordinate transfor-
mations, but another integration path simply implies a different set of dτ .
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1.2 General relativity (GR)

If we extend SR to arbitrarily moving reference frames, we would be able to do
physics from the point of view of an accelerated observer. There is, however,
another important motivation. Since in doing so apparent forces appear that
are closely related to gravity, we may perhaps also be able to address grav-
ity. And this turns out to be true. But if we are only after gravity, it would
seem more straightforward to try and incorporate gravity in the framework of
SR. Unfortunately, that doesn’t work. Newtonian gravity may be summarised
by ∇2Φ = 4πGρ and K = −m∇Φ. It follows that gravity operates instan-
taneously – a change in ρ alters Φ everywhere at the same moment. This is
inconsistent with SR because what is instantaneous in one frame is no longer
so in another. This theory holds therefore only in one preferred frame. The
problem might be overcome by replacing the equation for the potential by
�Φ = (c−2∂2/∂t2 − ∇2)Φ = −4πGρ, for example, but then other difficulties
appear, see e.g. Robertson and Noonan (1969) and Price (1982). Special rela-
tivistic theories of gravity using a flat spacetime and a single global reference
frame don’t work because they cannot accommodate the gravitational redshift
and the weak equivalence principle. A different approach is needed.

Weak equivalence

At this point we need to be more precise about the concept of mass. A force
K acting on a particle with inertial mass mi causes an acceleration a given
by Newton’s law K = mia. The inertial mass expresses the fact that ob-
jects resist being accelerated. To compute the force K we need the field(s)
in which the particle moves, and the charge(s) that couple to those field(s).
For example, K = q(E + v × B/c) for a particle with electric charge q mov-
ing with speed v in an electric field E and magnetic field B. For a particle
with a gravitational charge mg, usually called the gravitational mass, we have
K = −mg∇Φ. It follows that a = −(mg/mi)∇Φ.

It is an experimental fact that materials of different composition and mass
experience exactly the same acceleration in a gravitational field. Eötvös ver-
ified that with an accuracy of 10−8 in 1896, and Dicke attained 2 × 10−11

in 1962. Both experiments used a torsion balance. Presently, torsion balance
and free-fall experiments achieve an accuracy of ∼ 10−12. 5 6 Hence mg/mi is

5 Chen and Cook (1993) § 4.8; Will (1993) Ch. 14. With the help of lunar laser-
ranging an accuracy of 7 × 10−13 has been achieved (Dickey, J.O. et al., Science
265 (1994) 482). The idea is that the lunar orbit as a whole must be displaced
along the Earth-Sun line in case the Moon and the Earth experience a slightly
different acceleration with respect to the Sun.

6 The gravitational constant G, however, is only known with a precision of a few
times 10−4.
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a universal constant, taken to be unity in classical mechanics. This is called
the weak principle of equivalence. It follows that the concept of gravity loses
its meaning, as the field can be made to vanish by transforming to a freely
falling reference frame. For an electromagnetic field this is impossible as q/mi

is most certainly not a universal constant. From this Einstein (and others
before him) concluded that light must be deflected by a gravitational field,
because it moves along a straight line in a freely falling frame where there is
no gravity. This trick of transforming gravity away works only locally. In a
frame that moves with a freely falling particle, neighbouring particles will ini-
tially move uniformly with respect to each other, but not after some time. In
the famous elevator thought experiment it is impossible to distinguish locally
gravity from an externally imposed acceleration. But a distinction is possible
by observing two test particles at some distance from each other, because the
latter is homogenous while the former is not. The so-called tidal forces cannot
be transformed away, because a ‘real’ gravitational field is inhomogenous.

The fact that inertial and gravitational mass are identical is an unex-
plained coincidence, in some sense comparable to the unexplained coincidence
in Ptolemy’s world model, Fig. 1.1. Einstein took that as a basis for a new
theory. The fact that motion in a gravitational field depends neither on the
composition nor on the mass of the particles suggests that the particle orbits
might perhaps be determined by the structure of spacetime. In SR the world-
lines of free particles are straight, independent of the nature of the particles.
If we now switch on gravity, maybe a more general formulation is possible, in
which the worldlines remain ‘straight’ (i.e. geodesics) in a curved spacetime.7

In that case gravity would no longer be a force, but rather a consequence of
the curvature of spacetime. The elaboration of this idea is what we now know
as the theory of General Relativity (GR). Global inertial frames no longer
exist, only local inertial frames do. For according to GR there are no forces
working on freely falling particles, while it is at the same time not possible to
define a reference frame in which two freely falling particles move uniformly
with respect to each other.

Curvature

That curvature is the way to go ahead may be gleaned, for instance, from
the experiments of Pound, Rebka and Snider.8 Photons moving vertically in
the Earth’s gravity field turn out to be slightly redshifted, see Fig. 1.9. The
7 A space is said to be flat when Euclides’s 5th postulate on the existence of a

single parallel holds (in metric terms: the Riemann tensor is zero). A space is said
to have Euclidean geometry if the metric can be cast in the form ds2 = dxαdxα.
The Minkowski spacetime of SR is flat but not Euclidean.

8 Pound, R.V. and Rebka, G.A. Phys. Rev. Lett. 4 (1960) 337; Pound, R.V. and
Snider, J.L. Phys. Rev. B 140 (1965) 788.
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Fig. 1.9. The Pound-Rebka-Snider experiment. Photons move vertically upwards
over a distance of z1 − z0 = 22.5 meters and get redshifted.

required precision could be attained with the help of the Mössbauer effect.
The worldlines of subsequent wave crests in the Minkowski diagram must
be congruent because the gravity field does not depend on time. Therefore
∆t0 should be equal to ∆t1, regardless of the shape of the worldlines, but
the experiment shows that ∆t1 > ∆t0 (a redshift). This suggests (but does
not prove) that one can no longer assume that the Minkowski spacetime is
globally flat in the presence of gravity. A curved spacetime is descibed by a
local metric:

c2dτ2 = ds2 = gαβ dxαdxβ , (1.10)

and ds2 is the interval (‘distance’) between two events at xα and xα+ dxα; gαβ

is the metric tensor. The relation ds2 = c2dτ2 between interval and proper
time is taken to remain valid (for particles with mass), but the relation be-
tween dt and dτ is no longer as simple as in (1.6) because gαβ �= ηαβ . The
possibility of transforming gravity away locally amounts to the following re-
quirement: at any point {xµ} of spacetime there should exist a transformation
that casts (1.10) into the SR form ds2 = ηαβ dxαdxβ . In doing so we have
constructed a local inertial (i.e. freely falling) frame in {xµ} where gravity
does not exist9 – provided the frame is not too big, otherwise we will notice
the effect of curvature in the form of tidal forces. Sufficiently small sections of
spacetime are flat, ‘small’ meaning small compared to the typical dimension of
the system (the Schwarzschild radius, the scale factor S of the universe, etc.).
Spacetime curvature and tidal forces will be the hallmark of a real gravita-
tional field. Weight is merely a pseudo-force caused by being in the wrong (not
freely falling) frame, just as centrifugal and Coriolis forces are pseudo-forces
caused by being in a wrong (rotating) frame.

9 The terms ‘local inertial frame’ and ‘local freely falling frame’ will be used inter-
changeably. A local rest-frame is a local inertial frame in which a particle or an
observer is instantaneously at rest.
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Strong equivalence and general covariance

In order to generalise existing physical laws to GR we broaden the scope of the
weak equivalence principle, and assume that it is impossible to detect locally
any effect of gravity in a freely falling frame, whatever other forces may be
acting. In other words, in a freely falling frame all laws of physics have the
form they have in SR in the absence of gravity. This is called the strong prin-
ciple of equivalence. These laws / equations are then generalised by replacing
the tensors that appear in them by tensors that are invariant for arbitrary
co-ordinate transformations instead of only for Lorentz transformations. This
is called the principle of general covariance. The application of this principle
is somewhat arbitrary, as we shall see, but the obvious way out of adopting
the simplest possible generalisation has sofar proven to be effective. The term
‘principle of general covariance’, incidentally, is misleading in that it has noth-
ing to do with the covariant form of tensors. Principle of general invariance
(for arbitrary co-ordinate transformations) would have been a much better
name. Note also that general covariance has no deeper significance of its own
(Friedman, 1983). It is a self-imposed regime of great heuristic value in finding
physically correct equations, in some way comparable to checking the correct
dimension of an expression.

Mach’s principle

A number of ideas, collectively known today under the name Mach’s principle,
have strongly influenced Einstein in his formulation of GR. Mach rejected the
Newtonian concept of absolute space, as Leibniz had done earlier. Mach was
struck by the fact that the frame defined by the distant matter in the universe
happens to be an inertial frame, and that inertia manifests itself only if masses
are accelerated with respect to this frame. He argued that this cannot be just
a coincidence, and that the inertial mass may somehow be ‘induced’ by the
gravitational mass of all matter in the universe. This led Einstein to seek
a theory in which the geometry of spacetime, i.e. gαβ , is determined by the
mass distribution. The frame-dragging effect near rotating massive objects, for
example (Ch. 6), may be seen as a manifestation of Mach’s principle. However,
Gödel’s solution10 of the field equations indicates that Mach’s principle is only
partially contained in GR as it is presently formulated, see Friedman (1983)
for more information.

Exercise 1.3: GR and cosmology are fields of many principles. Formulate
in your own words the meaning of these principles: relativity, strong and
weak equivalence principle, Mach, general covariance, cosmological and the
anthropic principle (§ 13.4).

10 Gödel, K., Rev. Mod. Phys. 21 (1949) 447.
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1.3 The need for GR in astrophysics

While SR was born out of the need to resolve a major conflict, namely the
failure to measure the velocity (of the Earth) with respect to the ether, GR
was created rather for esthetic reasons: the wish to have a relativistic the-
ory of gravity. But there was no compelling conflict with observations that
called for a solution. The problem of the perihelium precession of Mercury
was known at the time, but was considered to be a nut for the astronomers to
crack – not as a stumble block to progress in physics. Consequently, after its
conception, GR remained for a long time what is was: an elegant but rather
inconsequential theory that was accepted by the physics community precisely
because of its elegance. After the correct prediction of the perihelium shift
and the spectacular confirmation of the deflection of starlight in 1919, there
weren’t many other things that could be measured. The technology of the day,
for example, was inadequate to detect the gravitational redshift in the solar
spectrum. SR on the other hand, led to many observable consequences and
was soon completely integrated in the framework of physics as an indispens-
able basic element. It was recognised that GR was relevant for cosmology,11

but in the first half of 20th century cosmology was very much a slightly eso-
teric field that a decent physicist did not touch, because there were very few
observations that could show the way. Notions such as a hot big bang, light
element synthesis and structure formation were as yet unheard of. And so
GR remained outside the mainstream of physics. That state of affairs began
to change only in the second half of the 20th century. In particular the 60ies
saw a rapid succession of novel developments and discoveries. Technological
advances led to a demonstration of the gravitational redshift in the laboratory
(1960), soon followed by a measurement in the solar spectrum (1962). Radar
reflections from Venus (1964) showed that the travel time of light increases
when it moves closely past the Sun. This effect had been predicted by GR
as a consequence of the warping of spacetime near a massive object, causing
distances to be generally longer.

Astrophysics, too, began to profit from several new developments. Most
important were the emergence of radio astronomy, and the possibility to de-
ploy instruments in space which opened up the field of X-ray astronomy.
Non-solar X-rays were first detected in 1962 and led to the discovery of X-
ray binaries. The X-ray emission is believed to be due to accretion of matter
onto a neutron star or black hole, two objects whose existence is predicted by
GR. The energy released per unit mass by accretion on such a compact object
depends on various parameters, and is of the order of 10% of the infalling rest
mass energy – a factor 10-20 more than hydrogen fusion. As the matter falls
into the deep potential well, it is heated to X-ray temperatures and serves as
11 In particular the work of Lemâıtre was influential in this regard (Lemâıtre, G.,

Ann. Soc. Sci. Bruxelles 47A (1927) 49 and M.N.R.A.S. 91 (1931) 483).
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Fig. 1.10. A classification of some applications of General Relativity. For weak
fields there is only the horizontal axis. The world of GR unfolds as we move upward
to stronger gravitational potential, measured by rs/R = 2GM/Rc2 ∼ |Φ|/c2, where
Φ ∼ −GM/R and R = typical size of the object (rs = its Schwarzschild radius). The
post-Newtonian approximation gives first order corrections to classical mechanics.
Neutron stars and black holes are in the strong field corner. Binary objects have
Φ ∼ −v2 and are approximately on the grey diagonal, slowly moving up to their
eventual merger and generating gravitational waves as they do so. The latter may
also be generated to the left of the diagonal (oscillating / rotating neutron stars)
or to the right (close encounters). To position cosmology the universe is considered
to be a compact object with expansion velocities approaching c near the horizon
(though fields and velocities are locally small).

a bright probe of conditions very close to the compact object. In some cases
the mass of the object could be shown to be larger than 3M�. Since this
is larger than the theoretical maximum mass of a neutron star, the object
is, in all likelihood, a black hole. Accretion flows thus provide an important
diagnostic tool of these compact systems, but it is not the only one. Direct
proof of the existence of neutron stars came in 1967 with the discovery of
pulsars. It was soon realised (1968) that pulsars are spinning neutron stars
equipped with a radio beacon, a feat no one had ever dreamt of. Neutron
stars had been hypothesized by Baade and Zwicky (1934) following the dis-
covery of the neutron (1932). They suggested that neutron stars are formed
in a supernova explosion, a gravitational collapse of a heavy, evolved star that
has run out of nuclear fuel. In 1939 Oppenheimer and Volkoff calculated the
structure of a neutron star and showed that it is completely determined by
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GR. Now, after 33 years, it turned out that these objects actually did exist.
And if stellar evolution, that great creator, can make neutron stars, it may
very well produce black holes too. These and other developments led to a
revival of theoretical studies in GR which had been stagnant for years. The
properties of these mysterious black holes and the generation of gravitational
waves, for example, drew much attention. Experimental gravity received a
boost as well, leading to the development of detectors for gravitational waves
and Gravity Probe B, a space mission for detecting relativistic precession ef-
fects – to name only two.

The first binary pulsar was discovered by Hulse and Taylor in 1975. This
system turned out to be a perfect cosmic experiment featuring two neutron
stars in a tight orbit, one of which is a precision clock. Since the system is
clean, application of GR permitted determination of all system parameters. In
1979 it was shown that the system loses energy at a rate that is consistent with
energy loss by gravitational waves. This is a strong if indirect argument for
the existence of gravitational waves. Several of these binaries have now been
found, and there should be many more out there that we cannot see because
they contain no pulsar. However, the gravitational waves they emit should
be detectable. As the binary loses energy it shrinks and moves slowly along
the diagonal in Fig. 1.10 until the components merge in a gigantic explosion,
unleashing a final burst of gravitational radiation and γ-rays into space which
should be visible throughout the universe. Perhaps this is the explanation of
the so-called short-duration γ-ray bursts, whose nature is still not understood.
And the hunt for gravitational waves is on: detectors for gravitational waves
are in an advanced state of development and several are operating in science
mode.

The discovery of quasi-stellar objects or quasars (1963) showed that there
are distant objects that are typically 100 times brighter than ordinary galaxies
in our neighbourhood. It was gradually understood that these and other ob-
jects (Seyferts, BL Lac objects,..) are different visual manifestations of active
galactic nuclei (AGNs) with a huge power release, up to 1048 erg s−1. Rapid
variability pointed to a small gravitational powerhouse casting as the main
actors a black hole of 106 − 109 M�, a surrounding disc swallowing matter (in
some cases as much as 10−100M� per year), and collimated bipolar outflows.
Another line of evidence for the existence of massive black holes comes from
galactic rotation curves which demonstrate that many galaxies contain heavy
objects (106 − 109 M�) within a small radius at the centre, very likely a black
hole. And there is very strong evidence that a ∼ 3.6 × 106 M� black hole is
lurking at the centre of our own galaxy, which is currently not accreting any
appreciable amount of mass.

The gravitational deflection of light by the Sun discovered in 1919 re-
ceived a spectacular follow-up in 1979 when the quasars Q0957+561 A and
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B were identified as two images of the same object whose light is deflected by
an intervening galaxy. Many gravitational lenses have been found since then.
In principle this opens the possibility to weigh the lens including the dark
matter it contains, and to study magnified images of very distant objects.
There have been many other advances in cosmology, but there are two that
outshone all others. The first is the cosmic microwave background (CMB),
discovered in 1965, with suggestions as to its existence dating back to 1946.
The CMB was a monumental discovery that marked the beginning of cos-
mology as a quantitative science. It put an end to the so-called steady state
model and permitted for example a quantitative prediction of the synthesis
of the light elements in the universe (1967), which has been confirmed by
observations. The latest highlight is the WMAP mission which has measured
the tiny fluctuations in the temperature of the CMB across the sky. This
has resulted in a determination of the basic parameters that fix the structure
and evolution of our universe. The second very important development was
of a theoretical nature and took place in 1981: the discovery of the possibility
of an inflation phase right after the Big Bang. The inflation concept repairs
some basic defects of the classical Friedmann-Robertson-Walker cosmology
that had to do with causality. The inflation paradigm is very powerful but
speculative. Pending some unsettled ‘fine-tuning’ it seems to explain why the
universe expands, why it is homogeneous and flat, as well as the origin of the
density fluctuations out of which galaxies evolve later.

This overview illustrates that GR is nowadays being studied in all cor-
ners of the diagram of Fig. 1.10. The field has really opened up and there is
a great sense of anticipation and promise of new results every day. Particle
physicists turn to cosmology in the hope to find answers to questions that
particle accelerators seem unable to address. This symbiosis of cosmology and
particle physics has sparked off the new field of astroparticle physics. And
although it may take years before the detectors for gravitational waves cur-
rently in operation actually observe a wave, it may also be tomorrow! This
element of suspense and impending surprise renders GR and its application
to astrophysics and cosmology a highly attractive field, and some of the thrill,
it is hoped, will transpire in the following chapters.





2

Geometry of Riemann Spaces

The fact that the geometry of the space in which we live is Euclidean is a very
basic daily experience. This may explain why it took so long before it was
realised that this may actually not be correct, and that the question of the
geometry of the space around us is a matter of empirical assessment. Early in
the 19th century Gauss studied the geometry of curved surfaces, and showed
that all references to a flat embedding space could be eliminated. In the same
way Riemann formulated in 1854 the geometry of 3D spaces. He found that
Euclidean geometry is merely one possibility out of many. Riemann’s method
could be generalized to spaces of arbitrary dimension. The geometry of these
curved Riemann spaces is wholly described within the space itself, by the use
of co-ordinates and the metric tensor. No embedding is required. These geo-
metrical concepts gradually spread beyond the mathematical incrowd, and in
the last quarter of the 19th century the idea that a fourth (spatial) dimen-
sion might exist had mesmerized the public’s imagination, perhaps even more
so than black holes did a century later. One of the products of that period
was Abbott’s famous Flatland.1 The flatland analogy is nowadays a standard
technique of teachers to explain some of the intricacies of curved spaces.

The theoretical framework of Riemann spaces is also the starting point
for the mathematical formulation of GR. In this chapter we discuss the tools
that any student should master in order to be able to deal with GR be-
yond the level of handwaving. In doing so we have deliberately chosen to stay
close to intuition as that outweighs the merits of rigour, certainly on first
acquaintance.

2.1 Definition

A Riemann space has the following properties:
1 Abbott, E.A.: 1884, Flatland: A Romance of many Dimensions, by a Square,

Seeley & Co. (London).
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Fig. 2.1. A geometrical picture and the corresponding co-ordinate picture of the
space defined by (2.2). Co-ordinate pictures will be frequently used.

1. Any point can be identified by a set of co-ordinates {xµ}; the number of
independent xµ is called the dimension.

2. It is possible to define continuously differentiable functions of {xµ}, in
particular one-to-one co-ordinate transformations {xµ} ↔ {xν}.

3. There is a metric that specifies the distance ds2 between two nearby points
xµ and xµ + dxµ:

ds2 = gαβ dxαdxβ ; gαβ = gβα . (2.1)

An antisymmetric part of gαβ does not contribute to ds2. Example: a spherical
surface with radius 1 and co-ordinates θ, ϕ:

ds2 = dθ2 + sin2 θ dϕ2 . (2.2)

Notation: dθ2 ≡ (dθ)2, dϕ2 ≡ (dϕ)2, but ds2 = (ds)2 only if ds2 > 0 as in
(2.2). But the metric is in general not positive definite! In this simple case the
geometrical structure may be visualised through embedding in an Euclidean
space of one higher dimension, but for Riemann spaces of higher dimension
this is no longer possible. Moreover, a Riemann space of dimension D cannot
always be embedded in a flat space of dimension D + 1. It is often useful
to draw a co-ordinate picture of a suitably chosen subspace, even though it
contains no information on the geometry, see Fig. 2.1.

An important point is that the metric determines the local structure of the
space, but reveals nothing about its global (topological) structure. A plane,
a cone and a cylinder all have the same metric ds2 = dx2 + dy2, but entirely
different global structures.
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Fig. 2.2. Co-ordinate lines and base vectors spanning the tangent space. The choice
of the co-ordinates is entirely free, and in practice dictated by the question which
co-ordinates are the most expedient to use.

2.2 The tangent space

In each point we construct a set of base vectors tangent to the co-ordinate
lines, as in Fig. 2.2. The arrow points towards increasing xi. The base vec-
tors span the flat tangent space, which has the same dimension as Riemann
space. This construction evidently requires the existence of a flat embed-
ding space, but that can be avoided as follows. Consider the curves {xα(p)}
through a point P in Riemann space (p = curve parameter), and construct
Aσ = [dxσ/dp]P . These vectors Aσ span the abstract tangent space of P ,
which exists independent of any embedding. Usually, however, the abstract
tangent space may be identified with the tangent space constructed in Fig. 2.2.
For our discussion there is no real advantage in making the distinction and
we shall work with the intuitive picture of Fig. 2.2.

We may use any metric we like in the tangent space, but there exists a
preferred metric. Consider an infinitesimal section of Riemann space. This sec-
tion is flat and virtually coincides with the tangent space. To an infinitesimal
vector ds = dxαeα in the tangent space we may therefore assign the length of
the line element ds in Riemann space, i.e. we require ds · ds = ds2 :

ds · ds = (dxαeα) · (dxβeβ) = eα · eβ dxαdxβ

= gαβ dxαdxβ , (2.3)

and it follows that
gαβ ≡ eα · eβ . (2.4)

Here · represents the vector inner product. This may be the usual inner
product, for example when we deal with 2D surfaces embedded in a flat R3.
But in case of the Minkowski spacetime of SR, and in GR, the inner product is
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not positive definite, and we may have that A ·A < 0 (for spacelike vectors).
By taking dxα = 1 in (2.3) and all other dxβ = 0 we see that eα ·eα = ds ·ds
(no summation). It follows that the ‘length’ of eα corresponds to a jump
∆xα = 1, at constant value of the other co-ordinates. Due to the curvature
this is of course only approximately correct. These base vectors are called a
co-ordinate basis because they are defined entirely by the co-ordinates and
the metric. The length of the base vectors depends on the choice of the co-
ordinates, and is in general a function of position. Consider for example polar
co-ordinates in a plane, Fig. 2.3. The length of er is constant, while |eϕ| ∝ r :

ds2 = 1 · dr2 + r2dϕ2 . (2.5)
↑ ↑

er · er eϕ · eϕ

Now that we have defined the basis we may construct finite vectors A = Aαeα

in the tangent space through the usual parallelogram construction. These so
called contravariant components Aα are the components of A along the basis.

The next step is to define another (covariant) representation Aα of A by
demanding that A · A = AαAα, for every A:

A · A = (Aαeα) · (Aβeβ) = gαβ AβAα ≡ AαAα , (2.6)

which leads to:
Aα = gαβAβ . (2.7)

In a more advanced treatment a distinction is made between tensors as geo-
metrical objects, their contravariant representation located in an abstract tan-
gent space, and the dual tangent space, in which the covariant representations
reside. In the current, more primitive context the following interpretation sug-
gests itself. Since Aγ = gγβAβ = eγ · eβAβ = (Aβeβ) · eγ = A · eγ , it follows
that Aγ is the projection of A on eγ . Hence, the contravariant components
Aβ are the components of A along the base vectors eβ (parallelogram con-
struction), while the covariant component Aα is the projection of A on the
base vector eα, Fig. 2.3, right:

contravariant (Aβ) : A = Aβeβ , (2.8)

covariant (Aα) : Aα = A · eα . (2.9)

Finally, the concept of index raising and lowering. We can lower an index
with the help of (2.7). The inverse operation of raising is defined as:

Aγ = gγαAα . (2.10)

The meaning of gγα can be gleaned from:

Aγ = gγαAα = gγαgανAν , (2.11)
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Fig. 2.3. Left: polar co-ordinates and the base vectors er and eϕ. Right: interpre-
tation of the contravariant and covariant representation of a vector A.

so that gγαgαν = δγ
ν , i.e. {gγα} is the inverse of {gαν}. In summary:

index lowering : Aα = gαβAβ ,

index raising : Aγ = gγνAν ,

{gγν} = {gαβ}−1 .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.12)

We have silently adopted the summation convention: if an index occurs twice,
once as a lower and once as an upper index, summation over that index is
implied. Note that the rules for index raising and lowering are always valid,
and have nothing to do with the question whether one is dealing with a tensor
or not. The tensor concept is related to behaviour under co-ordinate transfor-
mations, which was not an issue above, and to which we turn our attention
now.

2.3 Tensors

We are now in a position to do linear algebra in the tangent space, but we
leave that aside and study the effect of co-ordinate transformations. Consider
two overlapping sets of co-ordinates {xµ} and {xµ′}. The notation is sloppy
– it would be more appropriate to write {xµ} instead of {xµ′}, but {xµ′} is
much more expedient if used with care. A displacement δxµ′

is related to a
displacement δxν through:

δxµ′
=

∂xµ′

∂xν
δxν ≡ xµ′

,ν δxν . (2.13)
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Notation:

X,ν ≡ ∂X

∂xν
; X,νρ ≡ ∂2X

∂xν∂xρ
, etc. (2.14)

where X can be anything (Aα, gαβ , ...). We may freely interchange indices
behind the comma: X,αβγ = X,αγβ = X,γαβ etc.

Any set Aµ transforming according to (2.13) is called a contravariant ten-
sor of rank 1:

Aµ′
= xµ′

,ν Aν ↔ Aν contravariant. (2.15)

Hence δxν is a contravariant tensor. Tensors of rank 1 are often referred to
as vectors, and henceforth we shall use the word vector in this sense only. A
function such as the temperature distribution T (x) is called a scalar, a tensor
of rank zero. Its value in a point is independent of the co-ordinate system, i.e.
invariant for co-ordinate transformations: T ′(x′) = T (x), where T ′ is the new
function prescription. The derivative of a scalar Q,

Bµ =
∂Q

∂xµ
≡ Q,µ (2.16)

transforms like Bµ′ = Q′
,µ′ = Q,ν xν

,µ′ = xν
,µ′ Bν . Every Bν that transforms

in this way is called a covariant vector or tensor of rank 1:

Bµ′ = xν
,µ′ Bν ↔ Bν covariant. (2.17)

From two covariant vectors we can form Tµν = AµBν , a covariant tensor of
rank 2. More general tensors can be constructed through summation, Tµν =
AµBν + CµDν + ... This process may be continued: TαβCγ and AµCνBρ are
mixed tensors of rank 3 (provided T,A,B and C are tensors themselves). The
indices of tensors of higher rank transform according to (2.15) resp. (2.17),
for example:

Tα′
β′γ′δ

′
= xα′

,µ xν
,β′ xσ

,γ′ xδ′

,τ Tµ
νσ

τ . (2.18)

There is no other choice because (2.18) must hold for the special tensor
Tα

βγ
δ = PαQβRγSδ, and the transformation rules for vectors have already

been fixed! Note that we get a glimpse here of how the Lorentz transforma-
tions of SR will be generalised in GR: relation (1.7) of SR will be replaced by
(2.15). This transformation is still locally linear, but different in each point
of Riemann space as the {xµ′

,ν} are functions of position. The single global
Lorentz transformation will be replaced by a mesh of local Lorentz transfor-
mations.

The horizontal position of the indices is important: Tµ
ν is different from

Tν
µ ! The summation over double indices is called contraction. It lowers the

rank by two. For example Tµ
µ, Tα

βα
γ , Pαβ Qβγ , Tα

βα
β (double contraction).

Double indices are dummies: Tα
α = Tµ

µ, dummies may occur only twice, once
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as an upper and once as a lower index. If you encounter expressions like Cµµ,
PαβQα

γ or Pαβ Qαγ Rδα then you have made a mistake somewhere!

Index raising and lowering, finally, is done by factors gαβ or gµν for each
upper/lower index, e.g.:

Tµν = gµα Tα
ν ,

Tα
β

γδ = gαµ gβν gδσ Tµ
νγ

σ , etc.

⎫⎬
⎭ (2.19)

Again, like in (2.18), we have hardly any other choice here, because (2.19)
must hold for the special tensors Tµν = PµQν and Tα

β
γδ = PαQβRγSδ, and

the rules for index raising and lowering for vectors have already been fixed.
We are now in a position that we can raise and lower indices at liberty. We
emphasise once more that the rules (2.12) and (2.19) for index gymnastics are
generally valid, also for non-tensors. For example, Qµν = Aµ,ν is not a tensor
(exercise 2.4), and yet Qµ

ν = gµαQαν .

Exercise 2.1: The unit tensor is defined as δα
β = 1 for α = β, otherwise

0. Prove that δα
β is a tensor, and that δα

β = δβ
α, so that we may write δα

β

without risk of confusion. Show that δαβ = gαβ . Is ηαβ a tensor? And gαβ?
One could define δαβ = 1 for α = β, and 0 otherwise, but then δαβ is not a
tensor.

Hint: δα′

β′ must be equal to xα′
,ν xµ

,β′ δν
µ, or δα′

β′ = xα′
,ν xν

,β′ = xα′

,β′ (chain
rule) = 1 for α′ = β′ otherwise 0. Hence δα

β is tensor. And δβ
α =

gβµ gανδµ
ν = gβµ gαµ = gαµgµβ = 1 for α = β, otherwise 0, i.e. identical

to δα
β ; δαβ = gανδν

β = gαβ ; ηαβ is a tensor in SR only, i.e. under Lorentz
transformations; gαβ tensor: use (2.1), require that ds2 is also tensor in GR
(invariant scalar), and dxα is tensor, then exercise 2.3. Other definition δαβ :
δα′β′ = xν

,α′ xµ
,β′ δνµ? No, because the chain rule can no longer be used.

Exercise 2.2: If Tαβ and Pµ
ν are tensors then Pµ

µ is a scalar, but Tαα is
not. The inner product AνBν of two vectors is a scalar.

Hint: Pµ′
µ′ = xµ′

,α xβ
,µ′ Pα

β , then the chain rule.

Exercise 2.3: Quotient theorem: If AλPλµν is a tensor for arbitrary vector
Aλ, then Pλµν is a tensor; µν may be replaced with an arbitrary sequence of
upper / lower indices.
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Hint: AλPλµν is a tensor, i.e. Aλ′
Pλ′µ′ν′ = xα

,µ′ xβ
,ν′ AσPσαβ (λ′ and σ are

dummies!), then substitute Aσ = xσ
,λ′ Aλ′

, etc.

Exercise 2.4: The derivative Aµ,ν of a covariant vector Aµ is not a tensor,
as it transforms according to:

Aµ′,ν′ = Aα,β xα
,µ′ xβ

,ν′ + Aα xα
,µ′ν′ . (2.20)

The problem is in the second term of (2.20). In SR only linear (Lorentz)
transformations are allowed. In that case the second term is zero and Aµ,ν is
a tensor.

Hint: Start from Aµ′,ν′ = (xα
,µ′ Aα),ν′ , then use the product rule.

Exercise 2.5: Prove Tα
νAν = TανAν ; Tα

α = Tα
α ; gν

ν = 4 ; ην
ν =

g00 − g11 − g22 − g33.

Hint: We know that gν
ν = gναgαν = δν

ν = 4. The following may be illuminat-
ing: the scalar gν

ν is invariant, compute in a freely falling frame: gν
ν = ην

ν ,
SR holds in that frame: ην

ν = ηναηαν = 4. But in GR: ην
ν = gναηαν = etc.

2.4 Parallel transport and Christoffel symbols

Consider a particle at position P in Riemann space, Fig. 2.4. The vectors
associated with it (velocity, spin, ..) reside in the tangent space of P . At some
later time the particle has moved to position Q, but the tangent space of Q
does not coincide with that of P . To be able to do dynamics, we must develop
a way to compare vectors in the different tangent spaces along the worldline
of the particle. In other words, we need something against which to gauge the
concept of ‘change’. This is what parallel transport in GR is about.

Fig. 2.4 shows the curve xσ(p) in Riemann space. The vector A is always
in the tangent space, but the tangent spaces of P, Q, R, .. are disjunct, and
comparison of A(P ) with A(Q) or A(R) is not possible. To this end we define
a connection between tangent spaces, that is, a mathematical prescription
telling us how a vector A(P ) lies in the tangent space of Q if we ‘transport’
it along a given path from P to Q. This can be done in a variety of ways, but
much of the mathematical freedom that we have is eliminated by the physical
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P
Q R

SA(R)

A(S) xs(p)

Parallel transport in flat embedding space

Projection onto tangent space

{x a} {x a + d xa}

A'(S)

A'(R)
A(Q)

A'(Q)
A(P)

Fig. 2.4. Conceptual definition of parallel displacement of a vector along a curve
xσ(p) in Riemann space: first an ordinary parallel displacement in the flat embedding
space (resulting in the dashed arrows) followed by projection on the local tangent
space. The process is repeated in infinitesimal steps.

requirement that we recover what we ordinarily do when we transport a vector
parallel to itself in a flat space. Imagine the Riemann space embedded in a
flat space of higher dimension. We know how to move A(P ) around parallel
to itself in this embedding space, because it is flat. Having arrived in Q, the
result is projected onto the local tangent space. To order O(dxα) projection
does not change the length of the vector: the projection angle γ is O(dxα),
but cos γ = 1 up to O(dxα). This process is now repeated with infinitesimal
steps, and generates the coloured vector field A′ in Fig. 2.4, starting from
A(P ). In this way we have generalized the concept of parallel transport to
curved spaces, in such a way that it reduces to normal parallel transport for
flat spaces. Not surprisingly, it is also the definition that turns out to work in
GR. The result of the transport operation depends on the path, see Fig. 2.5.
However, when e in Fig. 2.5 is parallel-transported along a small curve on the
sphere there is virtually no change, because there is hardly any curvature felt
(exercise 2.17).

We now formalise our intuitive approach. The difference dA = A(Q) −
A(P ) is not defined, but up to order O(dxα) we have that dA 	 A(Q)−A′(Q),
and this is useful as both vectors lie in the same tangent space. The vector
dA may be interpreted as the intrinsic change of A, after correction for the
‘irrelevant’ change in the orientation of the tangent space:

dA 	 A(Q) − A′(Q) (2.21)

= d(Aµeµ) = (dAµ)eµ + Aµ(deµ) . (2.22)
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N

P Q

e

x0

x1 = r
x3 = j

Fig. 2.5. Left: Parallel displacement of the vector e along PNQ and along PQ
produces entirely different results. To the right, the geodesic precession of a top in
orbit around a central mass, see text.

Here, dA has been split into two contributions: the change dAµ ≡ Aµ(Q) −
Aµ(P ) of the contravariant components of A, and a contribution from the
change of the base vectors. On general grounds we anticipate deµ to be pro-
portional to both {dxβ} and {eα}:

deµ = Γα
µβ dxβ eα . (2.23)

Γα
µβ is called the Christoffel symbol of the second kind, and as may be expected

it is intimately related to the metric tensor:

Γµ
νσ = 1

2gµλ (gλν,σ + gλσ,ν − gνσ,λ) ≡ gµλ Γλνσ . (2.24)

The = sign is proved in § 2.5. The ≡ sign defines the Christoffel symbol of
the first kind, simply by raising one index with gµλ. According to (2.23) the
Christoffel symbols define the connection between the base vectors of the
tangent spaces at different positions. As pointed out above, there exist more
general connection coefficients than (2.24), but these play no role in GR.

Insert (2.23) in (2.22) and rename the dummy-indices:

dA = (dAµ + Γµ
νσ Aν dxσ)eµ ≡ (DAµ)eµ . (2.25)

The right hand side defines the intrisic change DAµ, which apparently obeys
the following equation:

DAµ

Dp
=

dAµ

dp
+ Γµ

νσ Aν dxσ

dp
(contravariant); (2.26)

DAµ

Dp
=

dAµ

dp
− Γν

µσ Aν
dxσ

dp
(covariant). (2.27)
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For the second relation (2.27) see exercise 2.8. We may apply these equations
in two ways. For a given vector field we may compute DAµ or DAµ for a
displacement dp along xσ(p). On the other hand, one may solve DAµ/Dp = 0
or DAµ/Dp = 0 starting from an initial value Aµ(P ) or Aµ(P ), and construct
a vector field along xσ(p) for which dA = A − A′ = 0. Parallel transport of
a vector along xσ(p) is therefore described by the differential equation

DAµ

Dp
= 0 or

DAµ

Dp
= 0 . (2.28)

We mention a few properties of the Christoffel symbols. They are symmetrical
in the last two indices:

Γµ
νσ = Γµ

σν ; Γλνσ = Γλσν . (2.29)

By interchanging the indices in (2.24) we may infer Γνλσ, and on adding that
to Γλνσ one obtains

Γλνσ + Γνλσ = gλν,σ . (2.30)

The Christoffel symbol transforms according to

Γµ′

ν′σ′ = Γρ
αβ xµ′

,ρ xα
,ν′ xβ

,σ′ + xµ′

,ρ xρ
,ν′σ′ . (2.31)

The proof is for diehards (see literature). The first term is what we would
expect if the Christoffel symbol were a tensor, but the second term makes
that it is actually not a tensor. The concept of parallel transport will be used
in § 2.5 to define geodesics.

In SR the velocity and spin vector of a particle on which no forces are
exerted are constant. They are transported parallel along the ‘straight’ orbit
of the particle. The idea of GR is that a particle under the influence of gravity
moves freely in a curved spacetime. A natural generalisation is that velocity
and spin vector of the particle can be found by parallel transport along the
orbit in spacetime. In this way we are able to understand the geodesic preces-
sion of a top. Fig. 2.5 shows a co-ordinate picture, with x0 = ct on the vertical
axis and polar co-ordinates x1 = r and x3 = ϕ in the horizontal plane. The
worldline of the top orbiting the central object (vertical bar) is a spiral. The
spin 4-vector (whose spatial part is directed along the spin axis) is parallel-
transported along the worldline. After one revolution the top has returned
to same spatial position, but because spacetime is not flat – not visible in a
co-ordinate picture – the spin vector has changed its direction. At this point
one may wonder how the effect is related to the Thomas precession. We refer
to Ch. 8 for a more general treatment, from which both Thomas precession
and geodesic precession emerge in the appropriate limit.
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Exercise 2.6: The length of a vector remains constant under parallel trans-
port:

dAνAν = d (gµνAµAν) = 0 .

Hint: First attempt: d = D = intrinsic change: DAνAν = (DAν)Aν +
Aν(DAν) = 0, because DAν = (DAν/Dp) dp = 0, etc. But (2.27) must still be
proven, and for that we need dAνAν = 0. Second attempt: d = total change:
d gµνAµAν = 2AνdAν + AµAν gµν,σ dxσ; (2.26): dAν = −Γν

µσ Aµdxσ; exer-
cise 2.5 and (2.30): 2AνdAν = −2Γνµσ AνAµdxσ = −gνµ,σ AνAµdxσ.

Exercise 2.7: Prove that dAνBν = 0 under parallel transport.

Hint: The length of Aν + Bν is constant.

Exercise 2.8: For parallel transport of a covariant vector:

dBµ = Γν
µσ Bν dxσ . (2.32)

Hint: 0 = dAµBµ = Aµ dBµ + Bµ dAµ, and dAµ is known.

Exercise 2.9: Prove that

Γµ
νµ = g,ν/2g = 1

2

(
log |g|

)
,ν

; g = det {gαβ} . (2.33)

Hint: (2.24): Γµ
νµ = 1

2gλµgλµ,ν . For a matrix M we have that Tr (M−1M,ν) =
(Tr log M),ν = (log detM),ν . Take M = {gαβ}.

2.5 Geodesics

Intuitively, a geodesic is a line that is ‘as straight as possible’ on a curved
surface. We say that a curve xµ(p) is a geodesic when the tangent vector
dxµ/dp remains a tangent vector under parallel transport along xµ(p). There-
fore ẋµ ≡ dxµ/dp must satisfy (2.28), and we arrive at the geodesic equation:

D
Dp

(
dxµ

dp

)
= 0 → ẍµ + Γµ

νσ ẋν ẋσ = 0 , (2.34)
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2ds = 0

2

A

ds  > 0

Fig. 2.6. A timelike geodesic connecting events A and B is the curve with the
maximum possible interval length between A and B, see text.

with ˙ = d/dp. For timelike geodesics2 the parameter p in (2.34) is propor-
tional to the interval length s. Proof: according to exercise 2.6 the length of
ẋα = dxα/dp is constant along xµ(p), i.e. ẋαẋα = gαβ ẋα ẋβ ≡ (ds/dp)2 is
constant. For timelike geodesics ds2 > 0, and we may take the square root to
conclude that ds = const · dp. Later, when GR is cast into the geometrical
framework developed here, this result will be connected to proper time (a
physical concept that does not yet exist here): ds = cdτ , so that

dp ∝ ds ∝ dτ for timelike geodesics. (2.35)

This is important as it implies that we may, for timelike geodesics, replace
the curve parameter p in (2.34) by the interval length s or the proper time τ .

Intuitively, a geodesic is also the shortest possible route between two
points. For a positive definite metric this is indeed the case, but ds2 can be
positive as well as negative in GR. Assuming that the interval

∫
ds =

∫
ṡdp of

a timelike geodesic is an extremum (see below), it is easy to see that it should
be a maximum: there always exists an arbitrarily nearby worldline that has a
smaller

∫
ds, by letting it jump more or less from light-cone to light-cone, as

in Fig. 2.6 (see e.g. Wald (1984) § 9.3). The construction of Fig. 2.6 fails for
spacelike geodesics.

2 In an analogy with (1.4) we speak of a timelike (spacelike) worldline or geodesic
when ds2 > 0 (ds2 < 0). A null worldline or null geodesic has ds2 = 0. For
spacelike and null geodesics p can no longer be interpreted as an interval length.
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Eq. (2.34) may also be derived from a variational principle.3 The sim-
plest is δ

∫
ṡdp = 0, and this is equivalent to δ

∫
F (ṡ) dp = 0 provided F is

monotonous, F ′ �= 0. We choose δ
∫

ṡ2 dp = 0 , or

δ
∫

Ldp = 0 ; L(xα, ẋβ) = (ds/dp)2 = gαβ ẋα ẋβ . (2.36)

The solution is determined by the Euler-Lagrange equations (Appendix C)

∂L

∂xλ
=

d
dp

(
∂L

∂ẋλ

)
. (2.37)

Now, ∂L/∂xλ = gαβ,λ ẋαẋβ because only gαβ depends on {xµ}. By using
∂ẋα/∂ẋλ = δα

λ one gets ∂L/∂ẋλ = 2gαλ ẋα. Substitute this in (2.37):

gαβ,λ ẋα ẋβ = 2(gαλ ẋα)˙

= 2(gαλ,β ẋβ ẋα + gαλ ẍα) ,

or
gαλ ẍα + 1

2 (2gλα,β − gαβ,λ) ẋα ẋβ = 0 . (2.38)

Now comes a frequently used trick: renaming of dummy indices: 2gλα,β ·
ẋα ẋβ = gλα,β ẋα ẋβ + gλβ,α ẋβ ẋα = (gλα,β + gλβ,α) ẋα ẋβ . Substitution in
(2.38) and multiplication with gµλ gives:

ẍµ + 1
2gµλ (gλα,β + gλβ,α − gαβ,λ) ẋα ẋβ = 0 . (2.39)

This is of the form of (2.34) and the factor multiplying ẋα ẋβ must be equal to
Γµ

αβ , which proves (2.24). Variational calculus is a very efficient tool for this
type of problem. Without much difficulty, it permits us to find the geodesic
equation directly from the metric, and from this equation one may just read
the Christoffel symbols Γµ

νσ. This is usually a lot faster than calculating them
from (2.24), and this method is therefore highly recommended.

The following result is very helpful when analysing the dynamics of a test
particle in GR (assuming that its orbit is a geodesic), because it allows us to
find constants of the motion. From the text below (2.37) we see that ∂L/∂xλ

vanishes if gαβ,λ = 0. And then eq. (2.37) says that ∂L/∂ẋλ = 2gαλẋα is
constant. In terms of the 4-velocity uµ = dxµ/dp we have found that the
covariant 4-velocity uλ = gλαuα is constant:

gαβ,λ = 0 → uλ = gλν ẋν = constant (2.40)

with ˙ = d/dp. The fact that uλ is a constant along a geodesic if the metric is
independent of xλ – doesn’t that ring a bell?
3 Here we switch to another definition of geodesics without proving its equivalence

with (2.34).
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Exercise 2.10: Show that the geodesics of the Lorentz metric (gαβ = ηαβ)
are straight lines.

Exercise 2.11: Show that the variational problem (2.36) is equivalent to
δ
∫

F (L) dp = 0 if F is monotonous, F ′ �= 0.

Hint: Write down (2.37) with L → F (L); use ∂F (L)/∂xλ = F ′ ∂L/∂xλ, and
(F ′ ∂L/∂ẋλ)˙ = (F ′)˙ ∂L/∂ẋλ + F ′(∂L/∂ẋλ)˙. But (F ′)˙ = F ′′dL/dp = 0 (L
is constant on xµ(p) because ẋαẋα is).

2.6 The covariant derivative

For a given vector field Aµ that is not restricted to the curve xσ(p) we can
elaborate dAµ/dp in (2.26) as dAµ/dp = Aµ

,σ ẋσ, because we are able to
compute derivatives in other directions than along the curve. This leads to
the introduction of the covariant derivative

DAµ

Dp
=

(
Aµ

,σ + Γµ
νσ Aν

)
ẋσ ≡ Aµ

:σ uσ , (2.41)

where uσ = ẋσ = dxσ/dp and

Aµ
:σ ≡ Aµ

,σ + Γµ
νσ Aν (2.42)

is the covariant derivative of Aµ. It may be regarded as the ‘intrinsic deriva-
tive’, the derivative after correction for the meaningless change in orientation
of the base vectors. In a similar way we may obtain the covariant derivative
of a covariant vector from (2.27):

Aµ:σ = Aµ,σ − Γν
µσ Aν . (2.43)

Important is that both Aµ
:σ and Aµ:σ are tensors if Aµ is a vector, even

though neither of the two terms on the right hand sides of (2.42) and (2.43)
are tensors themselves. The proof is a matter of combining relations (2.20)
and (2.31), and is left to the reader.

Next follow a few definitions. The covariant derivative of a product XY
of two tensors is:

(XY ):σ = X:σ Y + X Y:σ . (2.44)

For example:
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(AµBν):σ = (Aµ,σ − Γα
µσ Aα)Bν + Aµ(Bν,σ − Γα

νσ Bα)

= (AµBν),σ − Γα
µσ AαBν − Γα

νσ AµBα . (2.45)

Accordingly, we define the covariant derivative of a covariant second rank
tensor as:

Tµν:σ = Tµν,σ − Γα
µσ Tαν − Γα

νσ Tµα . (2.46)

The recipe for tensors of higher rank should be clear by now. For example, if we
need an expression for Tα

β
γ:σ, then we merely have to work out (PαQβRγ):σ

as in (2.44) and (2.45). The general pattern is T ∗
∗:σ = T ∗

∗,σ ±Γ-term for every
index. For a scalar:

Q:σ = Q,σ . (2.47)

Covariant derivatives do not commute, unlike normal derivatives (X,αβ =
X,βα for every X). We calculate Bµ:ν:σ by substituting Tµν = Bµ:ν in (2.46):

Bµ:ν:σ = Bµ:ν,σ − Γα
µσ Bα:ν − Γα

νσ Bµ:α , (2.48)

which should be elaborated further with (2.43). After that, interchange ν and
σ and subtract. The result of a somewhat lengthy calculation is:

Bµ:ν:σ − Bµ:σ:ν = Bα Rα
µνσ (2.49)

with
Rα

µνσ = Γα
µσ,ν − Γα

µν,σ + Γτ
µσ Γα

τν − Γτ
µν Γα

τσ . (2.50)

Rα
µνσ is called the RIEMANN tensor. It is a tensor because (2.49) is valid

for every vector Bα and because the left hand side is a tensor. Then ap-
ply the quotient theorem. Apparently, covariant derivatives commute only if
Rα

µνσ = 0. The Riemann tensor plays a crucial role in GR because it con-
tains all information about the curvature of space. Note the remarkable fact
that according to (2.49) the difference of two consecutive covariant differenti-
ations is proportional to the vector itself. The explanation is given in the next
section.

Exercise 2.12: Show that

Tµν
:σ = Tµν

,σ + Γµ
ασ Tαν + Γν

ασ Tµα . (2.51)

Great care is needed in using these relations. For example, let Tµν be di-
agonal. Then it seems evident that T 1µ

:µ = T 11
:1, but that is not the case.

Why not?

Hint: Write out (AµBν):σ as in (2.45). It is due to the action of the invisible
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dummy index α.

Exercise 2.13: An important property is that the metric tensor behaves as
a constant under covariant differentiation:

gµν:σ = 0 . (2.52)

Hint: Use (2.46) and (2.30).

Exercise 2.14: Prove the following compact form of the geodesic equation:

uσuµ:σ = 0 or uσuµ
:σ = 0 . (2.53)

Hint: The last relation is just 0 = Duµ/Dp = (2.41); the first relation with
(2.52): 0 = gλµuµ

:σuσ = (gλµuµ):σuσ = etc.

Exercise 2.15: A reminder of the linear algebra aspects of tensor calculus.
Given a 2D Riemann space with co-ordinates x, y, a metric and two vectors
in the tangent space of the point (x, y):

ds2 = dx2 + 4dxdy + dy2 ; Aα =
(

1
4

)
; Bα =

(
y
x

)
.

Write down gµν and gµν and show that all Christoffel symbols are zero. Com-
pute Aν and Bν

:ν .

Hint: g11 = g22 = 1; g12 = g21 = 2, use (2.24) for the Christoffel symbols;

gµν =
1
3

(
−1 2

2 −1

)
; Aµ =

(
9
6

)
; Bν

:ν =
4
3

.

The Γ’s being zero we have Bν
:ν = Bν

,ν .

2.7 Riemann tensor and curvature

The metric tensor does not tell us whether a space is flat, because the use
of ‘strange’ co-ordinates is not prohibited. For example ds2 = dr2 + r2dϕ2
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(planar polar co-ordinates) defines a flat space, but (2.2) defines a curved
space. The metric tensor contains apparently a mix of information on co-
ordinates and curvature. The intrinsic curvature properties are determined
by the Riemann tensor. We shall illustrate this by transporting a vector
Aµ parallel to itself along two different paths to the same final position, see
Fig. 2.7. According to (2.26), dAµ = −fσ(x)dxσ with fσ(x) = Γµ

νσAν (the
upper index µ is omitted for brevity as it does not change). The difference of
the two final vectors is:

dAµ = Aµ
1 − Aµ

2

= −fσ(x)dξσ − fσ(x + dξ)dησ + fσ(x)dησ + fσ(x + dη)dξσ

	 −fσdξσ − fσdησ − fσ,λ dξλdησ + fσdησ + fσdξσ + fσ,λ dηλdξσ

= (fσ,λ − fλ,σ) dξσdηλ . (2.54)

Now substitute fσ = Γµ
νσAν = Aµ

:σ − Aµ
,σ. The terms Aµ

,σ cancel, and after
some index gymnastics we arrive at (exercise 2.16):

dAµ = (Aµ
:σ,λ − Aµ

:λ,σ) dξσdηλ

= gµν(Aν:σ,λ − Aν:λ,σ) dξσdηλ

= gµν(Aν:σ:λ − Aν:λ:σ) dξσdηλ

= gµνRανσλ Aα dξσdηλ

= gµνRναλσ Aα dξσdηλ

= Rµ
αλσ Aα dξσdηλ . (2.55)

On account of (2.24) the Christoffel symbols vanish identically in a flat space
with rectangular co-ordinates, since gµν has only constant elements. Therefore
the Riemann tensor (2.50) is zero as well. The transformation properties of
a tensor then ensure that Rα

µνσ is zero in a flat space for any choice of the
co-ordinates.4 In that case parallel transport along a closed path leaves a vec-
tor unchanged.5 But in a curved space the orientation of the vector will have
4 Contrary to the Christoffel symbols, which are not tensors. For example, the

Christoffel symbols vanish in rectangular co-ordinates in a plane, but not in polar
co-ordinates.

5 Conversely, if the Riemann tensor is zero, it can be proven that there exist co-
ordinates so that gµν is constant which implies that the space is flat, see e.g. Dirac
(1975) § 12.
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Fig. 2.7. Parallel transport of the vector A from P to R along path 1 (PQR) and
path 2 (PSR) produces a different result.

changed. Once this is accepted intuitively, it is clear that the difference dAµ

must be proportional to the length of the vector, which explains the factor
Aα in (2.55). The derivation in (2.55) shows that the difference dAµ is also
proportional to the difference of two consecutive covariant differentiations,
and this explains why this difference is proportional to the vector itself, as in
(2.49).

There are several other ways to illustrate the relation between the Rie-
mann tensor and curvature. One is the equation for the geodesic deviation,
see exercise 2.18. Another is the relation between Gaussian curvature and the
Riemann tensor. Gaussian curvature refers to surfaces embedded in a flat 3D
space. The curvature κ in a point P of a curve on the surface is defined as
the inverse radius of the osculating circle at P . Each point has two principal
curvatures κ1 and κ2, and the Gaussian curvature K ≡ κ1κ2 is an invariant
determined by the geometry of the surface, which has several interesting prop-
erties.6 Turning now to Riemann spaces, take two orthogonal unit vectors e1

and e2 in the tangent space of a point P which are not null. Now consider
those geodesics in Riemann space that are tangent in P to the plane spanned
by e1 and e2. These geodesics subtend, locally around P , a 2D curved sub-
space of Riemann space. The Gaussian curvature of this 2D space at P is
Rαµνσeα

1 eµ
2eν

1eσ
2 , apart from the sign.7

The Riemann tensor obeys several symmetry relations that reduce the
number of independent components from n4 to n2(n2 −1)/12 (see literature).
In 4 dimensions Rα

νρσ has only 20 independent components, and all con-
tractions of Rα

νρσ are either zero or equal, apart from the sign. We choose

6 E.g. Gauss’s theorem on integral curvature: the sum of the three interior angles
of a geodesic triangle (bounded by 3 geodesics) equals π plus the surface integral
of K.

7 For a proof of these statements see e.g. Robertson and Noonan (1969) p. 216.
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the Ricci tensor : 8

Rµν ≡ Rα
µνα (RICCI). (2.56)

The explicit expression follows from (2.50):

Rµν = Γα
µα,ν − Γα

µν,α − Γα
µν Γβ

αβ + Γα
µβ Γβ

να . (2.57)

We infer from (2.33) that Γα
µα,ν = 1

2

(
log |g|

)
,µν

so that all terms in (2.57)
are symmetric in µ and in ν. Hence Rµν is symmetric:

Rµν = Rνµ . (2.58)

We may contract once more:

R ≡ Rν
ν = gνµRµν = Rαβ

βα . (2.59)

R is called the total curvature. Finally we introduce the Einstein tensor Gµν :

Gµν = Rµν − 1
2gµνR (EINSTEIN). (2.60)

The Einstein tensor will be useful later because its divergence is zero:

Gµν
:ν = (Rµν − 1

2gµνR):ν = 0 . (2.61)

Riemann, Ricci en Einstein tensor contain at most second derivatives of gαβ .
By substituting (2.24) in (2.50) we get:

Rα
µνσ = 1

2gαβ
(
gβσ,µν − gµσ,βν − gβν,µσ + gµν,βσ

)
+ gαβ

(
Γτβσ Γτ

µν − Γτβν Γτ
µσ

)
. (2.62)

The corresponding expressions for Rµν and for Gµν can be found from this
by contraction. The first term contains all second-order derivatives. The first-
order derivatives are in the second term. The proofs of (2.61) and (2.62) can
be found in the literature, but are not important here.

Exercise 2.16: Provide the missing details of the derivation of (2.55).

Hint: Second = sign: Aµ
:σ,λ = (gµνAν):σ,λ = (gµνAν:σ),λ = gµν

,λ Aν:σ +
gµνAν:σ,λ, but Aµ is parallel transported, hence Aν:σ = 0, etc. Third = sign:
Aν:σ:λ = Aν:σ,λ from (2.48). Fifth = sign: Rανσλ = Rναλσ is a symmetry
relation of the Riemann tensor.

8 Other authors define Rµν = Rα
µαν , another source of sign differences. For a

complete classification of all sign conventions see the red pages in Misner et al.
(1971). In terms of this classification we follow the − + − convention.
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Fig. 2.8. Parallel transport of a vector A over the surface of a sphere with radius
r = 1, see exercise 2.17.

Exercise 2.17: Consider a 2D spherical surface with radius r = 1, see Fig. 2.8.
Calculate the Christoffel symbols and the total curvature R. Convince your-
self that R ∝ r−2. Show that a vector A will rotate in the tangent space as
it is parallel-transported along a circle θ = θ0. Try to understand this with
the intuitive definition of parallel transport in § 2.4. Start in (θ, ϕ) = (θ0, 0)
with (Aθ, Aϕ) = (0, 1/ sin θ0). Show that AiAi is always 1, i.e. |A| ≡ 1, and
that after one full revolution A has rotated over an angle 2π cos θ0. Discuss
the limiting cases θ0 = π/2 (geodesic!) and θ0 � 1.

Hint: (2.2): g11 = 1, g22 = sin2 θ (θ = 1, ϕ = 2). Do not use (2.24), but rather
(2.37) with L(θ, θ̇, ϕ̇) = θ̇2 + sin2 θ ϕ̇2 :

∂L

∂θ
=

(∂L

∂θ̇

)
˙ → θ̈ − sin θ cos θ ϕ̇2 = 0 ;

∂L

∂ϕ
=

(∂L

∂ϕ̇

)
˙ → ϕ̈ + 2 cot θ θ̇ϕ̇ = 0 .

By comparing with (2.34) we may just read the Γ’s: Γ1
22 = − sin θ cos θ ;

Γ2
12 = cot θ (double product!). All other Γ’s are zero. (2.33) → Γα

µα,ν =
(log sin θ),µν → Γα

1α,1 = −1/ sin2 θ . And Γα
11,α = 0 ; Γα

22,α = −(sin θ ·
cos θ),θ = sin2 θ − cos2 θ. Algebra: R11 = −1 and R22 = − sin2 θ. Finally
R = gµνRµν = g11R11 + g22R22 = R11 + (1/ sin2 θ)R22 = −2. For a sphere
with radius r: R = −2/r2 (minus sign due to sign convention).
Parallel transport: p is proportional to the arc length (why?), so choose p = ϕ;
(2.28)+(2.26): Aµ

,ϕ + Γµ
νσ Aνxσ

,ϕ = 0 with x1
,ϕ = dθ/dϕ = 0 and x2

,ϕ =
dϕ/dϕ = 1:
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Fig. 2.9. The geodesic deviation.

Aθ
,ϕ = sin θ0 cos θ0 Aϕ ; Aϕ

,ϕ = − cot θ0 Aθ .

Eliminate Aϕ: Aθ
,ϕϕ + cos2 θ0 Aθ = 0, same equation holds for Aϕ. Harmonic

oscillator with frequency cos θ0. Solution for given initial value:

Aθ = sin(ϕ cos θ0) ; Aϕ = cos(ϕ cos θ0)/ sin θ0 .

A rotates clockwise when looking down on the tangent space from outside;
θ0 = π/2: Aθ ≡ 0 and Aϕ ≡ 1/ sin θ0 = 1, therefore A remains a tangent
vector; θ0 � 1 (small circle around the north pole): in that case the tangent
space is always almost parallel to the equatorial plane, with base vectors x en
y, and eθ 	 x cos ϕ + y sin ϕ and eϕ 	 (y cos ϕ−x sin ϕ) sin θ0. For θ0 � 1 it
follows that A = Aθeθ + Aϕeϕ 	 y, so that A remains virtually unchanged
with respect to a fixed frame.

Exercise 2.18: Given a set of geodesics xµ(p, λ) where p is the curve pa-
rameter and λ labels different geodesics (λ is constant along one geodesic).
Consider two neighbouring geodesics λ and λ + δλ. The points A and B are
connected by the vector ξµ = xµ(p, λ + δλ)− xµ(p, λ) 	 (∂xµ/∂λ)δλ ≡ eµδλ.
Prove that:

D2ξµ

Dp2
= Rµ

αβν uαuβξν ; uα = ẋα =
∂xα

∂p
. (2.63)

This is the equation for the geodesic deviation, that will play an important
role later. In a flat space the Riemann tensor is zero, and then ξµ is a linear
function of p, and for timelike geodesics also a linear function of the arc
length s, as expected. In a curved space however this is no longer the case.
For example, on a sphere ξµ(s) will be something like a sine-function.

Hint: The proof comes in three steps:



(a)
∂eµ

∂p
=

∂2xµ

∂p ∂λ
=

∂uµ

∂λ
= uµ

,α
∂xα

∂λ
= uµ

,α eα ;

(b) eµ
:α uα ≡ Deµ

Dp
=

∂eµ

∂p
+ Γµ

αβ eαuβ

= uµ
,α eα + Γµ

αβ eαuβ = uµ
:α eα ;

(c)
D2eµ

Dp2
≡ (eµ

:α uα):β uβ = (uµ
:α eα):β uβ

= uµ
:α eα

:β uβ + uµ
:α:β eαuβ

= uµ
:α uα

:β eβ + uµ
:α:β uαeβ +

(
uµ

:α:β − uµ
:β:α

)
uβeα

=
(
uµ

:α uα
)
:β

eβ + gµν
(
uν:α:β − uν:β:α

)
uβeα

= gµν uσ Rσ
ναβ uβeα

= Rσ
µ
αβ uσuβeα

= Rµ
σβα uσuβeα .

In (c) we have twice used (b), next uµ
:β:α eαuβ = uµ

:α:β eβuα is added and
substracted again, and then (2.53) and (2.49). The last = sign is a symme-
try relation of the Riemann tensor. Because δλ is constant, the equation also
holds for ξµ = eµδλ.

Exercise 2.19: Be aware of some inconsistencies in the notation. We encoun-
tered one in exercise 2.12. Meet two more here. In § 2.2 and § 2.3 it was
stressed that the rules for index raising and lowering are always valid. Does
that mean that

gµαgαλ,ν
?= gµ

λ,ν ; (2.64)

gµαu̇α ?= u̇µ . (2.65)

Hint: In exercise 2.12 the trouble was caused by a hidden index; here we
discover that the symbols without derivative had already been defined; one
way to see that (2.64) cannot be correct is to note that gµ

λ,ν ≡ δµ
λ,ν = 0, and

since det{gµα} �= 0 → gαλ,ν = 0 → gαλ = const. Instead, 0 = (gµαgαλ),ν =
gµα

,ν gαλ + gµαgαλ,ν , etc. Likewise, uµ is defined as gµαuα so that u̇µ =
(gµαuα)˙ = gµα,σ uσuα + gµαu̇α. Also correct is u̇µ = uµ,αẋα = uµ,αuα.
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General Relativity

We shall now put the ideas of GR on solid footing by casting them into
the framework of Riemann spaces. From now on we deal again with a 4-
dimensional spacetime in which every event is determined by the co-ordinates
x0, .. , x3 (x0 = ct). First we say a few words about the meaning of these co-
ordinates and their relation to the metric. Then we discuss the field equations
for the metric tensor, and the classical limit for weak fields.

3.1 Co-ordinates, metric and motion

It is important to understand that the co-ordinates serve merely as labels that
identify events in spacetime. They can be chosen arbitrarily, as long as they
are well-behaved (continuous, one-to-one,..), but they have usually no physical
meaning. In particular, differences in time or spatial co-ordinates are mean-
ingless because they are not invariant. In GR, measurable quantities such as
lengths and times are always expressed in terms of the co-ordinates and the
metric tensor, so that the result is invariant for a co-ordinate transformation.
Consider for example radial distances in the Schwarzschild metric. The differ-
ence r2 − r1 of two radial positions r1 and r2 is not invariant and not equal
to the measured distance. If we travel radially from r1 to r2 and measure
the distance with a measuring rod, the result is equal to ∫r2

r1

√
−grr(r) dr.

This strange expression will become clear in a moment. The point is that the
outcome of a measurement is always given by an invariant expression (invari-
ant for co-ordinate transformations) involving the metric tensor. These two
functions of labelling and measuring are frequently confused in daily life, for
example, in the case of cartesian co-ordinates (think of millimetre paper), but
in GR they are strictly separated.

Even though the choice of the co-ordinates is free, some co-ordinates are
much easier to use than others. It is not very wise to use rectangular co-
ordinates for a spherically symmetric system, and this is also very much true
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Fig. 3.1. Experimental determination of the metric of space in terms of the metric
of spacetime. After Landau and Lifshitz (1971), § 84.

in GR. By ‘natural selection’ a few standard co-ordinate systems have emerged
for frequently occurring physical situations that everybody uses because it
saves a lot of work.

Time and distance measurements

To begin with the co-ordinate time t, one way to define t is to count light
flashes of a beacon, for example a pulsar. The co-ordinate time interval ∆t
between n flashes has the same value everywhere in space (namely n), but the
proper time interval does not. Their relation is determined by the metric:

c2dτ2 = ds2 = gαβ dxαdxβ . (3.1)

For timelike worldlines (ds2 > 0) we interpret ds ≡ (ds2)1/2 as c × the proper
time interval dτ , like in SR. An observer at rest (dxi = 0, i = 1, 2, 3) has a
timelike worldline1 and hence (cdτ)2 = ds2 = g00(cdt)2 :

dτ =
√

g00 dt . (3.2)

dτ is the interval read from the clock of the observer at rest, while dt is the
co-ordinate time interval. It follows that g00 must be positive.
1 This need not be a geodesic. In the Schwarzschild metric an observer needs a

rocket to remain at rest. But ‘rest’ (dxi = 0) is not an invariant concept. If one
drops a stone into a black hole once every second, the radial position of any point
can be expressed in terms of the fractional stone number. These co-ordinates are
not stationary, but perfectly legitimate. In these co-ordinates ‘an observer at rest’
is a freely falling observer. Co-ordinates in which a freely falling observer is at
rest are used in cosmology.
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For the spatial co-ordinates, too, there should exist properly defined mea-
suring procedures to determine their value. As an example we illustrate in
the next chapter how the values of the Schwarzschild co-ordinates may be
determined. Another issue is this: an observer A (co-ordinates xµ +dxµ) may
determine the metric of the space in his neighbourhood empirically. How is
this metric related to the metric of spacetime? A places a mirror at B at a
distance dl, Fig. 3.1, measures on his clock the time dτ it takes a light signal
to travel from A to B and back again, and argues: dl = cdτ/2. Light signals
must travel along null worldlines.2 The interval ds2 between the events A, B′

and B′, A′′ is zero, or, from (3.1):

gij dxidxj + 2g0i dxidx0 + g00 (dx0)2 = 0 . (3.3)

Roman indices run from 1 to 3. Solve for dx0:

dx0
1,2 =

1
g00

{
−g0i dxi ±

√
(g0i dxi)(g0j dxj) − g00 gij dxidxj

}
(3.4)

(1 = −; 2 = +). The co-ordinate time interval dt between the events A and
A′′ is

cdt = dx0
2 − dx0

1 =
2

g00

√
(g0i g0j − g00 gij) dxidxj . (3.5)

With the help of (3.2) we infer dl2 = (cdτ/2)2 = g00(cdt)2/4. The spatial
metric now follows from (3.5):

dl2 =
(

g0i g0j

g00
− gij

)
dxidxj . (3.6)

Frequently g0i = 0, in which case the metric of space simplifies to 3

dl2 = −gij dxidxj . (3.7)

As an application consider a curve along the x1-axis, so that dx2 = dx3 =
0, and dl =

√−g11 dx1. The distance between x1 = a and x1 = b is l =
∫ b
a

√−g11 dx1, and this explains the formula used earlier.

Strong equivalence

The metric gαβ is determined by the mass distribution and the choice of
co-ordinates, through the field equations that are yet to come. When other
co-ordinates are used, the metric becomes different as well, in such a way that
ds2 and all other physical quantities remain invariant. The metric tensor gαβ

2 We know that ds2 = 0 in a local freely falling frame since SR holds there. But
the way ds2 is written in (3.1) makes it a scalar, hence it is zero in any frame.

3 But not always. In the Kerr metric (rotating black holes) gtϕ �= 0, and then weird
things may happen.
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is symmetric and may therefore be diagonalized locally by a transformation.
Subsequently, the (real) eigenvalues may all be rescaled to ±1 by redefining
the units. Further analysis (omitted here) shows that the metric can always be
brought into the following form, in the neighbourhood of any event x0 = {xµ

0},
by a transformation of co-ordinates:

gαβ(x0 + dx) = ηαβ + O(dxµdxν) , (3.8)

see e.g. Schutz (1985, p. 154) or Kenyon (1990, p. 24). In x0 the metric has
approximately the SR-form. These co-ordinates define a local freely falling
frame in x0. It follows that the possibility to apply the strong equivalence
principle is properly built into the theory.

Geodesic motion

In § 1.2 we anticipated that test masses on which only gravity acts move
along geodesics. An elegant argument due to Weinberg (1972, p. 72) shows
that geodesic motion is an almost inevitable consequence of the principles of
weak equivalence and general covariance. In a freely falling frame a test mass
moves as a free particle in SR. If its co-ordinates are {xµ′} we have

d2xµ′

dτ2
= 0 , and c2dτ2 = ηµ′ν′ dxµ′

dxν′
, (3.9)

where τ is the proper time of the mass. We now transform to co-ordinates xλ.
Denoting ˙ = d/ds with ds = cdτ we have dxµ′

/ds = xµ′

,λ ẋλ, or

0 = (xµ′

,λ ẋλ)˙ = xµ′

,λ ẍλ + xµ′

,λσ ẋλẋσ . (3.10)

On multiplying with xα
,µ′ and summing over µ′ :

ẍα + Γα
λσ ẋλẋσ = 0 with Γα

λσ = xα
,µ′ xµ′

,λσ . (3.11)

This looks like the geodesic equation. Likewise,

ds2 = gλσ dxλdxσ with gλσ = ηµ′ν′ xµ′

,λ xν′

,σ . (3.12)

These Γα
λσ and gλσ have as yet nothing to do with the Christoffel symbols

and the metric tensor, but Weinberg goes on to prove that the quantities
thus defined obey relation (2.24)! This illustrates how neatly GR fits into
the framework of Riemann geometry, and that the metric tensor is the basic
quantity that determines everything else. And it is of course no coincidence
that (3.11) for Γα

λσ is equal to the second term in (2.31)!

We know that the geodesic is timelike because ds2 is invariant and pos-
itive in SR. According to (2.35) we may choose s for the curve parameter
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p according and then (2.34) tells us that the 4-velocity uµ = dxµ/ds obeys
Duµ/Ds = 0, or, in terms of the 4-momentum pµ = m0cu

µ:

Dpµ

Dτ
= 0 , (3.13)

and this is a suggestive generalisation of the equations of motion dpµ/dτ = 0
of a free particle in SR.

What about null geodesics? We concluded earlier that particles with zero
rest mass must move along null worldlines, because of the invariance of ds2.
We now assume that those lines are null geodesics. Here, too, we have hardly
any choice because the worldlines are already null geodesics in SR.

Exercise 3.1: Show that the − sign in (3.7) is a consequence of the adopted
signature.

Hint: If we take − + + + in (1.1), then −c2dτ2 = ds2 = gαβ dxαdxβ in (3.1).
How does (3.2) look in that case, and how does (3.5) follow from (3.4)?

Exercise 3.2: In a local frame in free fall all Christoffel symbols are zero, but
the Riemann tensor is not.

Hint: (3.8) implies that gαβ = ηαβ + Aαβµν(xµ − xµ
0 )(xν − xν

0) in the neigh-
bourhood of x0 with constant Aαβµν . First-order derivatives of gαβ are zero
in x = x0, second-order derivatives not. Diehards should try to express Aαβµν

in terms of the Riemann tensor Rβµνσ with (2.62).

3.2 Weak fields (1)

Assume now that we are dealing with weak, time-independent gravity fields
and that the relevant velocities are non-relativistic, β = v/c � 1. Spacetime
is then nearly flat, and it makes sense to do the substitution gµν = ηµν + γµν

with γµν small, and γµν,0 = 0. We take once more p = s and settle first the
relation between ds and dt by using the metric (3.1), which we may write as
ds2 = (dx0)2 − dxidxi + γµνdxµdxν . After ‘division’ by dt2:

(
ds

dt

)2

	 c2 − v2 + γ00c
2 + terms O(γvc) or O(γv2)
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Dt1

Dt0

t

z0 z1

z

g

Fig. 3.2. The Pound-Rebka-Snider experiment revisited.

= c2
{
1 − β2 + γ00 + O(γβ)

}
	 c2 , (3.14)

plus terms of order β2. To order β we may put d/ds = c−1d/dt in the geodesic
equation (2.34):

0 	 d2xµ

dt2
+ Γµ

νσ

dxν

dt

dxσ

dt
	 d2xµ

dt2
+ c2Γµ

00 , (3.15)

since due to dxµ/dt 	 (c, vi) the summand ν = σ = 0 is at least a factor c/v
larger than all others. Now drop terms of order γ2 and use γµν,0 = 0 in (2.24):

Γµ
00 	 1

2ηµλ(2γλ0,0 − γ00,λ) = − 1
2ηµλγ00,λ . (3.16)

Hence, Γ0
00 = 0 and Γi

00 = 1
2γ00,i. Relation (3.15) produces an identity for

µ = 0, and for µ = i:

d2xi

dt2
	 − 1

2c2γ00,i = −∇iΦ . (3.17)

The second = sign follows from the classic equation of motion of a test particle
in a gravitational potential. The obvious choice is: Φ = 1

2c2γ00. We may now
draw two conclusions for weak time-independent gravity fields:

1. Since the classical field equation is ∇2Φ = Φ,ii = 0, the field equation of
GR must imply that

∇2γ00 = γ00,ii = 0 . (3.18)

2. We know one component of the metric tensor:

g00 = 1 + γ00 = 1 +
2Φ(r)

c2
. (3.19)
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Table 3.1. Parameters of characteristic objects.

Object M R (km) rs −Φ/c2

Earth 5.98 × 1027 g 6370 0.89 cm 7 × 10−10

Sun 1.99 × 1033 g 6.96 × 105 2.95 km 2 × 10−6

Procyon B 0.43 M� 8800 1.3 km 7 × 10−5

neutron star 1.5 M� ∼ 10 4.4 km ∼ 0.2

Gravitational redshift

At this point we sidestep to a related issue: the gravitational redshift. It
follows from (3.19) that light passing through a gravitational field is subject
to a frequency shift, see Fig. 3.2. In fact we compare proper time intervals
dτ at two locations z0 and z1 in the gravitational field. Physically, the proper
time is defined by identical oscillators at z0 and z1 (atoms of one species).
With the help of (3.2) and (3.19) we obtain

dτ(z0)
dτ(z1)

=
{

g00(z0)
g00(z1)

}1/2

	 1 +
Φ(z0) − Φ(z1)

c2
. (3.20)

Use was made of dt0 = dt1 because the geodesics must be congruent as the
gravity field is time-independent. Let n waves be emitted at z0 and be de-
tected at z1. The measured frequencies ν0 at z0 and ν1 at z1 follow from
n = ν0dτ(z0) = ν1dτ(z1). Consequently

∆ν

ν
=

ν1 − ν0

ν1
= 1 − dτ(z1)

dτ(z0)
	 Φ(z0) − Φ(z1)

c2
. (3.21)

Note the difference between the SR and the GR point of view. In § 1.2 we
tried to fit the Pound-Rebka-Snider experiment into the framework of SR,
that is, in one global frame in which the source and the detector are both at
rest. Under these circumstances we expect no differences in proper time, i.e.
dt(z0) = dt(z1), but this is refuted by the experiment. In GR the reasoning
is different. We now interpret Fig. 3.2 as a co-ordinate picture, a picture that
displays the co-ordinates but conveys no information about the geometry, see
Fig. 2.1. The null geodesics must of course be congruent because the field
is time-independent, i.e. dt(z0) = dt(z1). However, a measurement refers to
proper time, which in GR follows from (3.2).

Exercise 3.3: Show that the relative redshift in the Pound-Rebka-Snider
experiment is about 10−15 (h = 22.5 m). For details on the experimental
confirmation see also Adler et al. (1965, p. 129) and Misner et al. (1971,
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p. 1056).

Hint: (3.21): ∆ν/ν = ∆Φ/c2 = −gh/c2 .

Exercise 3.4: Henceforth, 4-velocity and 4-momentum of a particle with rest
mass m0 are defined by uµ = dxµ/ds and pµ = m0cu

µ. Prove that

uµ is a vector ; uµuµ = 1 ; pµpµ = (m0c)2 . (3.22)

Show that in the SR limit and for small velocity vi/c � 1 (E = γm0c
2 ; γ =

1/
√

1 − β2 ):

uµ = (γ, γvi/c) 	 (1, vi/c) ; pµ = (E/c, pi) (3.23)

Hint: vector: uµ′
= dxµ′

/ds = xµ′

,ν dxν/ds etc.; uµuµ = 1: ‘divide’ (3.1) by
ds2; SR: u0 = dx0/ds = dt/dτ = γ according to (1.6); ui = dxi/ds =
c−1(dxi/dt)(dt/dτ), etc.

Exercise 3.5: Estimate the values of Φ/c2 in Table 3.1.

Hint: Φ/c2 = −rs/2R with rs = 2GM/c2 = Schwarzschild radius.

3.3 Conservation of mass

In preparation for § 3.4 we analyse how conservation of mass is formulated in
GR. The volume element d4x = dx0dx1dx2dx3 transforms according to

d4x′ = |J |d4x , (3.24)

where J = det{xµ′
,α}. From gαβ = xµ′

,α xν′
,β gµ′ν′ and g ≡ det{gαβ} it follows

that g = J2g′, or
√−g = |J |

√
−g′ , 4 because g and g′ < 0. As a result,

√
−g d4x =

√
−g′ d4x′ ≡ proper volume element. (3.25)

This is important for integrations. It is physically not very meaningful to
integrate a scalar S over a section of spacetime, because

∫
S d4x is not in-

variant, even though S(x) = S′(x′). But
∫

S
√−g d4x =

∫
S′√−g′ d4x′ is

4 It follows, incidentally, that g is not a scalar.
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invariant. The proper volume element is the physical volume element cor-
responding to the meaningless (i.e. not invariant) co-ordinate volume el-
ement d4x. As an example consider spherical co-ordinates in a flat R3:
ds2 = dr2 + r2dθ2 + r2 sin2 θ dϕ2 and g = r4 sin2 θ > 0, so that the invariant
volume element equals

√
g d3x = r2 sin θ drdθdϕ.

The divergence Aµ
:µ of a vector Aµ is a scalar. With (2.42) and (2.33):

Aµ
:µ = Aµ

,µ + Γµ
σµAσ = Aµ

,µ +

(√−g
)
,σ

Aσ

√−g
, (3.26)

because g,σ/2g =
(√−g

)
,σ

/
√−g. We may write this as follows:

Aµ
:µ

√
−g = (Aµ√−g ),µ . (3.27)

Consequently, ∫
Aµ

:µ

√
−g d4x =

∫
(Aµ√−g ),µ d4x (3.28)

is invariant. For the volume of integration we choose a 3-volume V times
an infinitesimal dx0 that we subsequently eliminate again from the equation.
Assuming now that Aµ

:µ = 0 we infer that

0 =
∫

V

(A0√−g ),0 d3x +
∫

V

(Ai√−g ),i d3x , (3.29)

or, with Gauss’s theorem{∫
V

A0√−g d3x

}
,0

= −
∮

∂V

Ai√−g dσi . (3.30)

At this point we make a connection with physics by choosing Aµ = ρuµ where
ρ = rest mass density and uµ = 4-velocity. Exercise 3.6 invites the reader to
show that for this Aµ the classical limit of (3.30) coincides with the continuity
equation in integral form. On this ground we accept (3.30) with Aµ = ρuµ as
the integral form of the continuity equation in GR. The differential form is
then

(ρuµ):µ = 0 . (3.31)

Exercise 3.6: Show that with Aµ = ρuµ (3.31) and (3.30) in the non-
relativistic limit reduce to

∂ρ

∂t
+ ∇ · ρv = 0 ;

∂

∂t

∫
V

ρd3x = −
∮

∂V

ρv · dσ .
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Hint: For weak fields and β � 1 we have (3.23); in this limit ρuµ → (ρ, ρvi/c).
Furthermore

√−g 	 1.

Exercise 3.7: Prove the equation for the rate of change of the density ρ along
the worldline xµ(s):

dρ/ds = −ρuµ
:µ . (3.32)

Hint: (3.31) → ρ:µuµ + ρuµ
:µ = 0 and ρ:µ = ρ,µ.

3.4 The field equations

We now have to generalise the classical field equation ∇2Φ = 4πGρ to one
that determines the metric tensor. The story how this is done has been told
many times. The basic idea is that the local energy density fixes the local
curvature of spacetime:

curvature ∝ energy density . (3.33)

The left hand side of (3.33) will involve the Riemann tensor as that deter-
mines the curvature. The Riemann tensor contains second and lower-order
derivatives of the metric tensor gαβ , which is attractive on general grounds.
So it appears that we must relate ∇2Φ to the Riemann tensor. The energy
density on the right hand side could just be ρc2, but as we shall see, things
aren’t that simple.

To find the relation between the potential Φ and the Riemann tensor,
consider two test particles A and B moving along their respective geodesics
xµ(s, λ) and xµ(s, λ + δλ). A is for example an observer on board the Space
Station, who sees satellite B passing at some distance. This situation has been
analysed in exercise 2.18. The vector ξµ connecting A and B satisfies equation
(2.63) for the geodesic deviation:

D2ξµ

Ds2
= Rµ

αβν uαuβξν ; uα =
∂xα

∂s
. (3.34)

We elaborate this tensor equation in the local rest-frame of A. In that frame
gµν = ηµν according to (3.8), and dt = dτ . This means that A promotes
his clock to the master clock indicating co-ordinate time. Furthermore, all
Γ’s are zero (exercise 3.2), so that D/Ds = c−1D/Dτ = c−1d/dt. Moreover
xµ = (ct, 0, 0, 0) in this frame → uµ = (1, 0, 0, 0). We are left with
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Fig. 3.3. The geodesic deviation as an aid in finding the vacuum equations.

d2ξµ

dt2
= c2Rµ

00ν ξν . (3.35)

At this point A recalls that according to classical mechanics both he and B
move in a stationary gravitational field: r̈A = F (rA) and r̈B = F (rB). Setting
ξi = ri

B − ri
A we have

d2ξi

dt2
= F i(rA + ξ) − F i(rA) 	 F i

,k ξk = −Φ,ik ξk , (3.36)

since the force is related to the gradient of the gravitational potential as
F i = −Φ,i . By comparing (3.35) and (3.36) we find

Φ,ik = −c2Ri
00k . (3.37)

This is the relation between the second derivatives of Φ (that determine the
tidal forces) and the Riemann tensor. The use of the indices is sloppy, but
that’s all right as long as we are in the exploratory stage. The classical field
equation is Φ,ii = −c2Ri

00i = 4πGρ. It follows quite generally from (2.50)
that R0

000 = 0, and so we have found that

R00 = Rα
00α = − 4πGρ

c2
. (3.38)

However, this is not a tensor equation. The simplest guess would be that in
an arbitrary reference frame we should use Rµν = Rα

µνα. In vacuum (ρ = 0)
we would then get

Rµν = 0 (3.39)

Although derived for weak fields, this is indeed the correct vacuum field equa-
tion, also for the strong fields in the vicinity of compact objects and black
holes. An equivalent form is (see exercise):

Gµν ≡ Rµν − 1
2gµνR = 0 (3.40)
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Eq. (3.39) or (3.40) cannot be proven in the strict sense of the word. Their
status of vacuum equations rests on the fact that predictions inferred from
them are sofar in agreement with the observations. The deeper reason why
this is so remains a mystery – apparently this is how Nature works. We refer
to Pais (1982) for an account of Einstein’s Werdegang to arrive at the correct
field equation.

Nonzero energy density

What to do if the matter energy density ρc2 �= 0? Evidently, we cannot simply
replace the right hand side of (3.39) or (3.40) by a constant times ρ. To proceed
we study how ρ behaves under Lorentz transformations.5 Consider a volume
V0 at rest, containing point masses with number density n0, rest mass m0

and negligible random motion (‘cold dust’). The mass density is ρ0 = n0m0.
Observe V0 from a frame moving with velocity v. The mass of each particle
becomes m = γm0 with γ = (1 − β2)−1/2 and β = v/c. Lorentz contraction
makes that volume and number density transform as V = V0/γ and n = γn0,
respectively. Hence, the mass density transforms as ρ = γ2ρ0, and is therefore
not a scalar. Nor is it a component of a vector, as that produces one factor
γ at most, according to (1.8). However, the transformation of a second rank
tensor may yield a factor γ2 since

Tα′β′
= Lα′

µLβ′
ν Tµν , (3.41)

and if we take ρ as the 00-element of a second rank tensor of which it is
the only nonzero element in the local rest-frame, Tµν = ρ δµ

0 δν
0 , we obtain

T 0′0′
= (L0′

0)2ρ = γ2ρ in the moving frame. It seems therefore that ρ is also
part of a second rank tensor. But which? The crucial step is to recognise that
one should take Tµν = ρuµuν where ρ is now the rest mass density and uµ

the 4-velocity. Since uµ = c−1dxµ/dτ 	 (γ, vi/c) we have T 00 = γ2ρ.

It would seem now that (3.38) is to be replaced by Rµν = −(4πG/c2)Tµν

or equivalently Rµν = −(4πG/c2)Tµν . However, that leads to inconsistencies.
The trouble is that Rµν

:ν is in general nonzero, so that Tµν
:ν would also be

nonzero. And as explained in a moment, conservation of mass or geodesic
motion would no longer be guaranteed. The proper continuation turns out to
be to replace (3.40) by

Gµν = Rµν − 1
2gµνR = − 8πG

c2
Tµν (3.42)

with Tµν ≡ ρuµuν = stress-energy tensor; ρ = rest mass density and uµ =
bulk 4-velocity of the cold dust. The value of the constant −8πG/c2 will be
derived in the next section by considering the classical limit.
5 We follow Price (1982). This beautifully written article is highly recommended.
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Equation (3.42) has several attractive features. Because Gµν
:ν = 0 accord-

ing to (2.61), we have Tµν
:ν = (ρuµuν):ν = 0, or

uµ(ρuν):ν + ρuνuµ
:ν = 0 . (3.43)

Multiply this by uµ, use uµuµ = 1 and uµuµ
:ν = 0 (exercise 3.10). We are

left with (ρuν):ν = 0, which is the continuity equation. A second consequence
is that uνuµ

:ν = 0, i.e. the matter moves along geodesics according to (2.53).
Thus, equation (3.42) with Tµν = ρuµuν describes the dynamics of a collec-
tion of particles with a rest mass density ρ in their own gravitational field
(‘cold dust’). Mass is conserved, and there is only gravitational interaction
between the mass elements because each moves along a geodesic. For that
reason, too, there are no collisions and the gas pressure is negligible. This
simple form of matter corresponds to the current state of the universe, with
the galaxies serving as the particles. Other forms of matter in which for ex-
ample the pressure is important can be handled by adapting the stress-energy
tensor Tµν accordingly. We return to this issue in § 3.6.

This may be the right place to draw attention to the power of the principle
of general covariance. The field equations have the same form in all reference
frame, rotating, accelerating or other – it does not matter. The reader who
has checked the derivation of the Schwarzschild and Robertson-Walker metric
will have noticed that we make in fact a series of co-ordinate transformations.
We make one whenever it comes in handy, and there is no penalty because
the form of the field equations does not change. Whatever co-ordinates we
choose, the field equations deliver a metric tensor so that ds2 = gαβ dxαdxβ

is the correct metric in those co-ordinates. But the real advantage lies deeper:
the formulation of GR and the field equations would be practically impossible
without exploiting general covariance. Take for example the stress-energy ten-
sor Tµν = ρuµuν of cold dust. It appears on stage by asking how the rest mass
energy density ρc2 transforms in SR, which suggests that it is the 00-element
of a second rank tensor ρuµuν . Next we declare this form valid in all reference
frames. It follows that what appears as energy density ρc2 in the local rest
frame shows up partly as momentum fluxes in another frame. The conclusion
that all elements of the stress-energy tensor Tµν contribute to the curvature
of spacetime is both inescapable and gratifying.

Exercise 3.8: Prove that (3.39) and (3.40) are equivalent.

Hint: Forward: Rµν = 0 hence Rµν = 0 and R = Rµ
µ = 0, i.e. Gµν = 0

(Gµν = 0 as well). Backward: Gµν = 0 → 0 = Gµ
µ = Rµ

µ − 1
2gµ

µR = −R.
Therefore Rµν = 0 and Rµν = 0.
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Exercise 3.9: Why is ξi in (3.35) and (3.36) the physical distance between
A and B? In § 3.1 co-ordinate differences ξi = ri

B − ri
A were said to be

meaningless.

Hint: The physical distance is determined by (3.7), and what is gij?

Exercise 3.10: Show that uµuµ
:ν = 0 (not to be confused with the geodesic

equation (2.53): uνuµ
:ν = 0).

Hint: 1 = uµuµ = gµν uµuν → 0 = (gµν uµuν):σ = gµν(uµ
:σuν + uµuν

:σ) =
2gµν uµuν

:σ = 2uνuν
:σ. One may likewise prove that uµuµ:σ = 0.

3.5 Weak fields (2)

This section is a little technical. We seek an expansion of the field equations
in terms of the small parameter γαβ for weak fields. We need that to be able
to deal with the classical limit of the field equations, and later for handling
gravitational waves. Once more we make the substitution 6

gαβ = ηαβ + γαβ , (3.44)

with γαβ ‘small’; gαβ and γαβ may now depend on x0. Take α = σ in (2.62)
and substitute (3.44). The largest term in Rµν turns out to be of the order of
γ:

Rµν = 1
2ηαβ(γαβ,µν − γµα,βν − γβν,µα + γµν,αβ) + O(γ2) . (3.45)

This can be written in the following form:

Rµν = 1
2�γµν − 1

2 (τµ,ν + τν,µ) + O(γ2) , (3.46)

where � is the d’Alembert operator:

�ψ = ηαβψ,αβ =
(

1
c2

∂2

∂t2
− ∇2

)
ψ (3.47)

and
6 ηαβ and therefore γαβ is not a tensor in GR. The use of tensors is usually

very convenient but there are exceptions, and is never a must. This is one such
exception.
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τµ = ηαβ(γµα,β − 1
2γαβ,µ) . (3.48)

Verification is a matter of substitution. The next step is a transformation of
the co-ordinates. An exercise shows that there always exists a transformation
xµ → x̃µ so that τ̃µ = O(γ̃2). We work now in these new co-ordinates and
omit all terms of second and higher order in γ̃. Then R̃µν = 0 reduces to (we
drop the ˜ again):

Rµν 	 1
2�γµν = 0 ; τµ 	 0 . (3.49)

Here ‘	’ means accurate to first order in γ. These co-ordinates are called
harmonic co-ordinates.7 For stationary fields (3.49) leads to ∇2γ00 = γ00,ii =
0. Hence Rµν = 0 implies (3.18) in these harmonic co-ordinates. But in (3.18)
no special co-ordinates had been chosen. Exercise 3.11 shows that γ̃00 = γ00

for stationary fields, so that (3.18) is always valid.

We also need the equivalent of (3.49) for the Einstein tensor Gµν . We
suppress details and give only the result:

Gµν 	 1
2�hµν ; hµν

,ν 	 0 , (3.50)

with
hµν = γµν − 1

2ηµνγ ; γ = γσ
σ ;

γµν = hµν − 1
2ηµνh ; h = hσ

σ .

⎫⎬
⎭ (3.51)

Since Rµν and Gµν are of order γ, we may raise and lower indices with ηαβ

which may be moved through � in (3.49) and (3.50). Therefore we may move
the indices up and down in these expressions as we please. The condition
hµν

,ν = 0 is called the Lorentz gauge because of the strong analogy with the
Lorentz gauge in electrodynamics (Aν

,ν = 0 with Aν = vector potential). The
field equation for weak field now follows from (3.42) and (3.50):

�hµν = − 16πG

c2
Tµν (3.52)

The one remaining issue is to show that the constant in eq. (3.42) has
the value −8πG/c2. From the definition of the Einstein tensor (2.60) we infer
that Gµ

µ = R − 2R = −R. Substitution back into (2.60) produces Rµν =
Gµν − 1

2gµνGα
α. We now write (3.42) as Gµν = kTµν and compute k. In the

classical limit G00 is by far the largest element of Gµν since uµ 	 (1, vi/c).
Hence G00 	 η0αη0βGαβ = G00 	 kρ, and Gµ

µ = ηµαGµα 	 G00 	 G00. It

7 Co-ordinates obeying the 4 restrictions gαβΓµ
αβ = 0 are called harmonic. For weak

fields this amounts to τµ = 0 to first order in γ, see Weinberg (1972), p. 161 ff.
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follows that R00 	 G00 − 1
2η00G

α
α 	 1

2G00 	 1
2kρ. Comparison with (3.38)

yields k = −8πG/c2.

Exercise 3.11: Show that τµ can be made of order O(ξ2) by the transforma-
tion xα → x̃α = xα + ξα(x) with ξα and its derivatives ‘small’.

Hint: x̃α
,µ = δα

µ + ξα
,µ ; gµν tensor → gµν = g̃αβ x̃α

,µ x̃β
,ν , from which

gµν = g̃µν + ξµ,ν + ξν,µ + O(ξ2). Hence γ̃µν = γµν − ξµ,ν − ξν,µ. Substitute in
τ̃µ = ηαβ(γ̃µα,β − 1

2 γ̃αβ,µ):

τ̃µ = τµ − �ξµ − ησρ(ξσ,µρ − 1
2ξσ,ρµ − 1

2ξρ,σµ) + O(ξ2) .

The term ησρ(...) is zero (interchange ρ and σ in the third term – why is
that allowed?). Choose ξµ so that �ξµ = τµ, then τ̃µ = O(ξ2) = O(γ̃2)
and R̃µν = 1

2�γ̃µν + O(γ̃2). There is still gauge freedom left because ξµ is
determined up to an arbitrary solution of �ξµ = 0.

Exercise 3.12: For weak stationary fields the metric in harmonic co-ordinates
may be written as

gαβ = ηαβ + γαβ = ηαβ +
2Φ(r)

c2
eαβ . (3.53)

eαβ = 1 if α = β, otherwise 0 (this is not a tensor, see exercise 2.1; because
γαβ is not a tensor it cannot be expressed in terms of known tensors).

Hint: Since ηαβ is diagonal and γαβ,0 = 0 we have ηαβγµα,β = −γµi,i and
1
2ηαβγαβ,µ = 1

2γ00,µ− 1
2γii,µ. From τµ = 0: γii,µ−2γµi,i = γ00,µ. Try γij = aδij

and other γ’s zero, except γ00. Result: a,j = γ00,j . Take a = γ00 = 2Φ/c2,
according to (3.19).

Exercise 3.13: Show that Φ ∼ −v2 for weak stationary field, so that γαβ

from (3.53) is of order β2 (this is not to say that Φ depends on v, but that
its value is of order −v2 with v = characteristic velocity of a particle at that
position.)

Hint: Planetary orbits: Φ = −GM�/r; circular orbit: mv2/r = GM�m/r2.

Exercise 3.14: A general invariant definition of energy does not exist in GR.
However, it does in case of a single test particle. From (3.23) we retrieve the
SR relations pµ = (E/c, pi) and pµ = (E/c, −pi) since gαβ = ηαβ . Hence two
possibilities: E = cp0 or E = cp0. Show that
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E = cp0 = m0c
2u0 (3.54)

is the right choice because it has the correct classical limit, and because E is
constant when the metric does not depend on time.

Hint: E = constant from (2.40). Consider the classical limit with (3.22) and
(3.53): (m0c)2 = pαpα = gαβ pαpβ = g00(p0)2+g11p

2 (p2 = pipi). Furthermore
g00(p0)2 = g00(g00p0)2 = g00(p0/g00)2 = p2

0/g00 	 (1−2Φ/c2)p2
0. We now have

(m0c)2 	 (1− 2Φ/c2)(p2
0 − p2) or π2

0 −π2 	 1 + 2Φ/c2, with π0 = p0/m0c and
π = p/m0c, or π2

0 = 1 + π2 + 2Φ/c2. Take the square root and use that π and
Φ/c2 are small: π0 	 1+ 1

2π2 +Φ/c2, from which E = cp0 	 m0c
2 +p2/2m0 +

m0Φ. The three terms have an obvious classical interpretation.

Exercise 3.15: Invariant definition of the energy of a test particle. Consider
a particle with 4-momentum pα and an observer W with 4-velocity uα. Show
that from W ’s point of view, the energy of the particle is

E = cpαuα . (3.55)

Hint: E = cpαuα = cpαuα = cp0 = energy that W assigns to the particle
according to (3.54) (¯ = local rest-frame of W ). Every W assigns the same
function cp0 to the particle, but not the same value.

3.6 Discussion

In this section we deal with more general forms of the field equations. In the
first place we investigate what the expression for the stress-energy tensor Tµν

should be when the gas pressure p is nonzero. It seems reasonable that Tµν

will be of the form Tµν = ρuµuν + pAµν . The only symmetric tensors that
are available to build Aµν are gµν and uµuν . Therefore try

Tµν = ρuµuν +
p

c2
(a uµuν + b gµν) . (3.56)

Here, too, Tµν
:ν = 0 must hold. For p = 0 that resulted in the continuity

equation and the geodesic equation (i.e. the equation of motion), and some-
thing similar will also be the case now. To see what happens we work in the
classical limit and work out {ρuµuν +(p/c2) (auµuν +bηµν)},ν = 0. The result
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turns out to be the continuity equation and the Navier-Stokes equation pro-
vided a = 1 and b = −1, see Foster and Nightingale (1989, p. 73) or Schutz
(1985, Ch. 4). Thus we have found that

Tµν = ρuµuν +
p

c2
(uµuν − gµν) . (3.57)

In the early universe and in neutron stars the gas pressure reaches values of
the order of p ∼ ρc2. Such high pressures determine, together with other forms
of energy, the structure of spacetime because pressure is a form of potential
energy. Pressure gradients, on the other hand, occur in the equations of motion
Tµν

:ν = 0, but they have no influence on the curvature of spacetime (§ 5.3).

The reasoning leading to (3.57) is an example of how the principle of
general covariance is used in practice. We start with the SR form of Tµν and
look for a so-called mimimal generalisation, i.e. it is forbidden to add terms
that are identically zero in SR, such as ρRµν

αβuαuβ . Often it amounts to
, → : and ηµν → gµν , but it remains a matter of trial and error.

The next issue is the cosmological constant. Einstein considered an extra
term in the field equation (3.42):

Gµν + Λgµν = − 8πG

c2
Tµν (3.58)

The historical motivation for a nonzero cosmological constant Λ was that
(1) it is a term that logically may appear in the equation as gµν

:ν = 0, so
that Tµν

:ν = 0 is left intact, and (2) it permitted the possibility of a static
spherical universe. This solution turned out to be unstable, and when it was
subsequently discovered that the universe actually expands, the cosmological
constant was abandoned. But nowadays it is back with flying colours, see
§ 9.5. The magnitude of Λ is of the order of (size universe)−2 which is so
small that (3.42) remains valid for all local physics. A physical explanation of
the cosmological constant is postponed to § 9.5.

Finally, we ask how (3.42) is to be extended to include other fields. These
fields have their own stress-energy tensor and it seems obvious that

Gµν = − 8πG

c2

∑
i

Tµν
(field i) . (3.59)

The coupling between Gµν and the electromagnetic field, for example, is im-
portant for the metric of a charged black hole. Here we shall only have the
opportunity to consider coupling of Gµν to a scalar boson field. Models of the
universe based on such equations exhibit inflation, a brief period of extremely
rapid expansion, and may provide a solution for some of the problems of the
standard model of the Big Bang.
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matter tells spacetime how
to curve through (3.42)

spacetime tells matter how to
move through T mn

:n = 0 or (3.60)

T 
mn g 

mn

Fig. 3.4. Schematic structure of the equations of general relativity. The novel aspect
is that both matter and spacetime have become active players in the dynamics of
the world. Conceptually, one full round corresponds to one timestep in a numerical
code. If gµν and gµν,0 are given at x0 = 0 and T µν is sufficiently well behaved, then
gµν is determined for all x0, up to 4 arbitrary functions. This freedom of choice
corresponds to the freedom of choosing the co-ordinates (Wald, 1984, Ch. 10). After
Rees, M. et al.: 1974, Black Holes, Gravitational Waves and Cosmology, Gordon and
Breach, p. 2.

Structure of the equations

We draw attention to an important peculiarity of eq. (3.59), namely that it
does not handle the various forms of energy on equal footing. All energies other
than gravitational energy contribute to the geometry of spacetime through
their Tµν on the right hand side in (3.59). The gravitational field itself appears
only in Gµν on the left. Since Gµν

:ν = 0 poses 4 extra restrictions, eq. (3.42) or
(3.59) is a set of 6 nonlinear differential equations for the metric tensor. The
nonlinearity is the mathematical expression of the fact that the energy density
of the gravitational field acts as a source of gravity itself. The superposition
principle of classical mechanics (gravitational field of two bodies is the sum
of the individual fields) no longer applies in GR, except when the fields are
weak, as in eq. (3.52).

The computational scheme of GR is shown in Fig. 3.4. The dynamics of the
(matter) fields is fixed by Tµν

:ν = 0 (for example the structure of a relativistic
star, § 5.3). The motion of a test particle follows from a generalisation of (3.13):

Dpµ

Dτ
= fµ . (3.60)

The extra forces fµ (e.g. the Lorentz force) push the particle off the geodesic,
and the 4-momentum pµ is no longer parallel transported along the orbit.8

8 For information on numerical relativity see for instance Font, J.A., Living Rev.
Relativity 6 (2003) 4 (http://www.livingreviews.org/lrr-2003-4).
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But if there is only gravity, a particle experiences no acceleration in the par-
lance of GR.

Exercise 3.16: Show that (3.58) reduces to

∇2Φ = 4πGρ − Λc2 (3.61)

in the classical limit. A positive Λ is equivalent to a negative mass density,
i.e. a repulsive force.

Hint: Write k = −8πG/c2 for brevity. Combine (3.50) and (3.58): 1
2�h00 =

−Λ + kρ. Combine (3.50) and (3.58) again, lower one index and contract:
1
2�h 	 −4Λ + kρ (T 00 and G00 are the largest terms). From (3.51): �γ00 =
�(h00− 1

2h) = 2Λ+kρ. Stationary fields and (3.19): ∇2Φ 	 −�Φ 	 −1
2c2�γ00.
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The Schwarzschild Metric

The stationary, spherically symmetric solution of the vacuum equations is of
fundamental importance as it describes the field of a spherically symmetric
body like a star – the simplest gravitational field one may think of. This solu-
tion was discovered by K. Schwarzschild in 1916, a few month after the pub-
lication of the vacuum equations. The field equations (3.39) are complicated
nonlinear differential equations, but the spherical symmetry greatly simplifies
the mathematics. The solution predicts small deviations from the Newtonian
results for weak fields like that of the Sun, of which four have been confirmed
experimentally (the perihelium precession, the deflection of light, the gravita-
tional redshift, and the time delay of light signals). Together with the recent
discoveries on the binary pulsar these are the most important quantitive verifi-
cations of GR. The solution also applies to the strong fields of compact objects
such as neutron stars and black holes. In the latter case the solution predicts
the existence of a singularity in spacetime at r = 0, which is, fortunately,
unobservable for a distant observer.

4.1 Preliminary calculations

We employ spherical co-ordinates x0 = ct, x1 = r, x2 = θ and x3 = ϕ, and
simplify the form of the metric (3.1) step by step:

1. Stationarity implies that gαβ,0 = 0.

2. ds2 must be invariant under dx0 → −dx0, so that terms ∝ dx0dxi must
be absent → g0i = 0.

3. Spherical symmetry implies that ds2 is invariant under dθ → −dθ and
dϕ → −dϕ. It follows that grθ = grϕ = gθϕ = 0 because terms ∝ drdθ,
drdϕ and dθdϕ must vanish.

4. At this point only the diagonal terms remain, and we write the metric as

ds2 = Ac2dt2 − Bdr2 − Cr2dθ2 − D r2 sin2 θ dϕ2 . (4.1)
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Fig. 4.1. A wormhole. Adapted from Misner et al. (1971).

The factors r2 and r2 sin2 θ have been added for convenience.

5. According to (3.7), the subspace x0, r = constant has the metric of a
sphere dl2 = r2(Cdθ2 +D sin2 θ dϕ2). An inhabitant of this space will not
notice any effect of gravity (spherical symmetry). He concludes that his
world is an ordinary spherical surface and takes C = D.

6. By choosing convenient units we can arrange that C = 1.

Following the literature we write (4.1) as

ds2 = e2νc2dt2 − e2λdr2 − r2(dθ2 + sin2 θ dϕ2) , (4.2)

where ν = ν(r) and λ = λ(r).1 Further simplification of the metric on the
basis of symmetry considerations is not possible, except that we know that
for r → ∞ (4.2) must coincide with the Lorentz metric, so that λ, ν → 0 for
r → ∞. The elements of the metric tensor are:

g00 = e2ν ; g11 = −e2λ ;

g22 = −r2 ; g33 = −r2 sin2 θ ,

}
(4.3)

and all other gαβ are zero. We have chosen the co-ordinates so that the 2-
volume of each subspace x0, r = constant equals 4πr2, but that is not to say
that r is the distance to the origin. There may not even be an origin. Suppose
you move in the radial direction toward the origin, defined by insisting that
the area of the sphere r = constant decreases. But as you keep moving in that
direction, the area may at some point begin to increase again so that r = 0 is
never reached, Fig. 4.1. The message is that such topological constructions are
in principle possible, and the field equations decide whether they are real or
not. As it turns out, any particle entering a black hole must hit a singularity
at r = 0. So a Schwarzschild wormhole, if it exists, is a different concept than
Fig. 4.1 suggests, see Misner et al. (1971) and Wald (1984).

Of course one may use different co-ordinates. One possibility is to take
1 ν and λ are in this chapter no longer available as indices.
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B = C = D in (4.1), leading to isotropic co-ordinates, see Adler et al. (1965).
Another possibility is Kruskal-Szekeres co-ordinates, § 6.4. Physical quantities
are always independent of the choice of the co-ordinates. The calculations that
follow are divided into three steps: first we need the Christoffel symbols. Then
we use (2.57) to find Rαβ . Finally ν(r) and λ(r) are solved from Rαβ = 0.

The Christoffel symbols

The easiest way is to find the geodesic equation with the help of variational
calculus. We need this equation anyway, and once we have it we may just
read the Γ’s by comparing with (2.34), just like we did in § 2.5. We elaborate
(2.36) with the help of (4.2):

δ
∫ {

e2ν(ẋ0)2 − e2λṙ2 − r2θ̇2 − r2 sin2 θ ϕ̇2
}

dp = 0 . (4.4)

Here ˙ = d/dp, and x0(p), r(p), θ(p), ϕ(p) is the parametric representation of a
geodesic. Next we write down the Euler-Lagrange equations (2.37). Notation:
L = {· · ·} = integrand of (4.4):

(a). ∂L/∂x0 = (∂L/∂ẋ0)˙. Since ∂L/∂x0 = 0 we get

(2 ẋ0e2ν)˙ = 0 ; ˙ = d/dp . (4.5)

Now use that ν̇ = dν/dp = (dν/dr) (dr/dp) = ν′ṙ with ν′ ≡ dν/dr. Result:

ẍ0 + 2 ν′ẋ0ṙ = 0 ; ′ = d/dr . (4.6)

Comparing with (2.34) we conclude that Γ0
01 + Γ0

10 = 2ν′, and since Γ0
01 =

Γ0
10 we have

Γ0
10 = ν′ . (4.7)

The other Γ0
αβ are zero.

(b). ∂L/∂r = (∂L/∂ṙ)˙, or after performing the differentiations:

2ν′ e2ν(ẋ0)2 − 2λ′ e2λ ṙ2 − 2r (θ̇2 + sin2 θ ϕ̇2) = (−2ṙ e2λ)˙ . (4.8)

After some cleaning up:

r̈ + ν′ e2(ν−λ) (ẋ0)2 + λ′ ṙ2 − r (θ̇2 + sin2 θ ϕ̇2) e−2λ = 0 . (4.9)

Consequently:

Γ1
00 = ν′ e2(ν−λ) ; Γ1

11 = λ′ ;

Γ1
22 = −r e−2λ ; Γ1

33 = −r sin2 θ e−2λ ,

⎫⎬
⎭ (4.10)
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and all other Γ1
αβ are zero. We get the remaining Christoffel symbols from

the other two geodesic equations (see exercise):

Γ2
12 =

1
r

; Γ2
33 = − sin θ cos θ ; (4.11)

Γ3
13 =

1
r

; Γ3
23 = cot θ . (4.12)

At this point all nonzero Christoffel symbols have been found. Recall that
Γµ

αβ = Γµ
βα.

Computing Rαβ

The Γ’s must now be inserted in (2.57). This requires a little perseverance.
We illustrate that for R00 :

R00 = Γα
0α,0 − Γα

00,α − Γα
00 Γβ

αβ + Γα
0β Γβ

0α

= −Γ1
00,1 − Γ1

00 Γβ
1β + Γα

0β Γβ
0α

= −Γ1
00,1 − Γ1

00 Γβ
1β + 2Γ0

10 Γ1
00 . (4.13)

Γα
µα occurs twice in (2.57) and may be calculated with (2.33). But the gain

is minimal because it is just as easy to find Γα
µα through a summation:

Γα
0α = Γα

3α = 0 ; Γα
1α = ν′ + λ′ +

2
r

; Γα
2α = cot θ . (4.14)

From (4.14) we now obtain

R00 = −
{

ν′′ − ν′λ′ + (ν′)2 +
2ν′

r

}
e2(ν−λ) . (4.15)

Without proof we mention the other nonzero components of Rαβ :

R11 = ν′′ − ν′λ′ + (ν′)2 − 2λ′

r
; (4.16)

R22 = (1 − rλ′ + rν′) e−2λ − 1 ; (4.17)

R33 = R22 sin2 θ . (4.18)

We may now compute the total curvature

R = Rα
α = gαβRαβ =

∑
α Rαα/gαα

= − 2
{

ν′′ − ν′λ′ + (ν′)2 +
2ν′

r
− 2λ′

r
+

1
r2

}
e−2λ +

2
r2

. (4.19)
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In
∑

α · · · the summation convention has been switched off momentarily.
The Einstein tensor Gαβ = Rαβ − 1

2gαβR is also diagonal and we need only
G00 and G11:

G00 = − e2ν

r2

d
dr

r (1 − e−2λ) ; (4.20)

G11 =
1
r2

(e2λ − 1) − 2ν′

r
. (4.21)

Exercise 4.1: Show that the two remaining geodesic equations for θ and ϕ
are

(r2θ̇)˙ = r2 sin θ cos θ ϕ̇2 → θ̈ +
2
r

ṙθ̇ − sin θ cos θ ϕ̇2 = 0 ; (4.22)

(r2 sin2 θ ϕ̇)˙ = 0 → ϕ̈ +
2
r

ṙϕ̇ + 2 cot θ θ̇ϕ̇ = 0 , (4.23)

and determine the corresponding Christoffel symbols (4.11) and (4.12).

4.2 The Schwarzschild metric

It is actually easier to solve Gαβ = 0 than Rαβ = 0. From (4.20) we find:

r (1 − e−2λ) = b → e2λ =
1

1 − b/r
, (4.24)

with b constant. Substitute that in G11 = 0:

2ν′ =
b/r2

1 − b/r
→ e2ν = A (1 − b/r) , (4.25)

since the expression on the left can be integrated to 2ν = log (1 − b/r)+
const. The constant A must be 1 because (4.2) must be the Lorentz metric
for r → ∞. We insert these results in (4.2):

ds2 = (1 − b/r) c2dt2 − dr2

1 − b/r
− r2(dθ2 + sin2 θ dϕ2) . (4.26)

To determine the constant b we note that the metric (4.26) can only de-
scribe the effect of a spherically symmetric mass M . In the classical limit
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the gravitational potential is Φ = −GM/r, and according to (3.19) we
have g00 = 1 − 2GM/c2r for large r. Comparison with (4.26) shows that
b = 2GM/c2, or

ds2 = (1 − rs/r) c2dt2 − dr2

1 − rs/r
− r2(dθ2 + sin2 θ dϕ2) . (4.27)

The quantity

rs ≡ 2GM

c2
(4.28)

is called the Schwarzschild radius. The Sun has rs 	 3 km, see also Table 3.1.
The components of the metric tensor, and λ and ν are now given by

g00 = e2ν = e−2λ = 1 − rs/r ; g11 =
−1

1 − rs/r
;

g22 = −r2 ; g33 = −r2 sin2 θ .

⎫⎪⎬
⎪⎭ (4.29)

Relations (4.27) – (4.29) describe the standard form of the Schwarzschild
metric. Birkhoff showed in 1923 that the Schwarzschild metric is the only
spherically symmetric solution of the field equations exterior to a spherical,
nonrotating, uncharged but not necessarily stationary mass distribution. This
is known as Birkhoff’s theorem.

The range of validity of the co-ordinates is as follows. Because of station-
arity −∞ < t < ∞. Furthermore 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π because we have
chosen θ and ϕ in the ‘usual’ way. For r there are two options:

1. There is a material surface at r = R (and R > rs). The object is a
(compact) star and the metric is valid in the vacuum region outside the
star, r ≥ R. Inside the star the metric is different, see Ch. 5.

2. There is no material surface in the range r > rs. In that case the object
is a black hole. The metric is valid everywhere (no restrictions on r), but
has two singularities at r = 0 and at r = rs. Their physical nature will be
dealt with in Ch. 6.

We briefly dwell on the question how the values of the co-ordinates may be
measured. The co-ordinate time t may be determined for example by counting
pulses from a laser. The laser emits pulses once every second in its own proper
time, say. Now let the laser be at r = ∞ (‘sufficiently far away’) and have a
proper frequency ν0. At some finite r one measures a blueshifted frequency ν.
We repeat the reasoning below (3.20): νdτ = ν0dt (dτ = dt at r = ∞ because
gαβ = ηαβ). From (3.2) and (4.29):
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∆ν

ν0
=

ν − ν0

ν0
=

dt

dτ
− 1 = g00

−1/2 − 1

=
(
1 − rs

r

)−1/2

− 1 	 rs

2r
+ · · · . (4.30)

By measuring ∆ν we may determine r/rs everywhere. To fix r and rs sepa-
rately, we may either put a satellite in a circular orbit and measure its period
∆t (→ r, see (4.46)), or we may construct a sphere with radius r, defined as
the set of all spatial positions having the same frequency ν, and measure its
area O. Then r is also known because r has been chosen so that a surface
r = constant has 2-volume O = 4πr2. Finally, we may draw a grid of latitute
and longitude circles on these spheres to determine θ and ϕ. This shows that
measuring procedures to determine t, r, θ and ϕ do in principle exist.

No one will notice anything out of the ordinary as long as he or she stays on
a shell r = constant, because the metric is classical: dl2 = r2(dθ2+sin2 θ dϕ2).
But strange things do emerge as one travels between shells: the 3-volume be-
tween two shells at r = r1 and r = r2 is larger than 4π

3 (r3
2 − r3

1). And the
distance between r1 and r2 is larger than the co-ordinate difference r2 − r1

(see the exercises below).

Exercise 4.2: Give a qualitative argument to illustrate that rs is proportional
to the mass M and not, for example, to some other power of M .

Hint: Require for example that the escape velocity is c at R = rs. Another
possibility is to say that Mc2 ∼ potential gravitational energy ∼ (GM/rs)M .

Exercise 4.3: Calculate the total curvature R. Is spacetime curved or not?

Hint: A close look at (2.59) and (3.39) may spare you a surprise. What does
‘curved’ mean?

Exercise 4.4: Consider two spherical shells at r = r1 and r = r2. Calcu-
late (1) the 3-volume between the shells; (2) the 2-volume (area) in the plane
θ = π/2 between r1 and r2; (3) the 1-volume (length) of a stick pointing
radially to the star, end points at r1 and r2; (4) the 2-volume of spacetime
enclosed by t1 ≤ t ≤ t2, r1 ≤ r ≤ r2 and θ, ϕ = constant.

Hint: Comes down to finding the invariant volume-element according to § 3.3.

(1). Metric according to (3.7): dl2 = (1 − rs/r)−1dr2 + r2(dθ2 + sin2 θ dϕ2),
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hence g ≡ det{gik} = (1 − rs/r)−1 · r2 · r2 sin2 θ; 3-volume =
∫ r2

r1
dr

∫ π

0
dθ ·∫ 2π

0
dϕ

√
g = 4π

∫ r2

r1
(1 − rs/r)−1/2r2 dr > 4π

∫ r2

r1
r2dr = 4π

3 (r3
2 − r3

1).

(2). θ = π/2, dθ = 0 and g = (1 − rs/r)−1 · r2; 2-volume =
∫ r2

r1
dr

∫ 2π

0
dϕ ·

√
g > π(r2

2 − r2
1).

(3). dl2 = (1 − rs/r)−1dr2 because dθ = dϕ = 0. Hence l =
∫ r2

r1
(1 −

rs/r)−1/2 dr > r2 − r1.

(4). Metric: ds2 = (1 − rs/r)c2dt2 − (1 − rs/r)−1dr2 → g = −c2; 2-volume =∫ t2
t1

dt
∫ r2

r1
dr

√−g = c(t2 − t1) · (r2 − r1).

Exercise 4.5: To derive (4.30) we have used eq. (3.2), which is only valid for
observers at rest. Consider an observer moving along r in the Schwarzschild
metric at co-ordinate speed v = dr/dt. Prove the following relation between
the co-ordinate time and the proper time of the observer:

dτ

dt
=

{(
1 − rs

r

)
−

(
1 − rs

r

)−1(
v

c

)2}1/2

. (4.31)

Hint: dθ = dϕ = 0 in (4.27), divide by c2dt2. This result is a generalisation
(1.6) of SR and also of (3.2). It serves as a warning that different kinds of
redshift (here gravitational and Doppler) do not simply add!

4.3 Geodesics of the Schwarzschild metric

We could set out from the geodesic equations (2.34), but things become a lot
easier if we utilise the constants of motion. These can be found in various
ways. Because gαβ,0 = 0 we infer from (2.40) that u0 = g0αuα = g00u

0 =
(1 − rs/r)cṫ = constant:

(1 − rs/r) cṫ = constant ≡ e . (4.32)

Recall that t(p), r(p), ϕ(p) is the parametric representation of a geodesic and
that ˙ = d/dp for a null geodesic and ˙ = d/ds = c−1d/dτ for a timelike
geodesic. For a massive particle, (3.54) says that e = E/m0c

2 = the total
energy in units of its rest mass energy. Relation (4.32) is important because
it fixes the rate of proper time τ of an object in geodesic motion with respect
to co-oordinate time t. We may write it as
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Fig. 4.2. Classification of the four different types of orbit in the Schwarzschild
metric, here referred to as α, β, γ and δ-orbits (there is no generally accepted
nomenclature). The figure shows V (r) and e2 as a function of r (not to scale). For
massive particles with 1

8
< a < 1

6
the potential has two extrema, but V (r−) < 1. In

this case there are two kinds of α-type orbits but no γ-type orbit. See also exercise
4.15.

dτ

dt
=

1
e

(1 − rs/r) . (4.33)

For a photon the meaning of e is not immediately clear, as ṫ = dt/dp and p is
an unspecified orbit parameter. This issue is elucidated in exercise 4.15. The
metric does not depend on x3 = ϕ either → u3 = g33u

3 = g33ϕ̇ = const. Due
the spherical symmetry the geodesics must lie in a plane, and we may restrict
ourselves to θ = π/2, i.e. g33 = −r2:

r2ϕ̇ = constant ≡ h . (4.34)
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This is a generalisation of Kepler’s second law – equal areas covered in equal
times – which follows also directly from (4.23).

To find the equation for ṙ, it is actually easier to start from (4.27) than
from (4.8). We ‘divide’ by dp2:

(1 − rs/r) c2ṫ2 − ṙ2

1 − rs/r
− r2ϕ̇2 =

(
ds

dp

)2

≡ κ , (4.35)

with κ = 0 / 1 for a massless /massive particle, respectively. With the help of
(4.32) and (4.34) we obtain

e2

1 − rs/r
− ṙ2

1 − rs/r
− h2

r2
= κ , (4.36)

which we may write as

ṙ2 = e2 − V (r) ; with V (r) =
(

1 − rs

r

)(
h2

r2
+ κ

)
. (4.37)

For κ = 0 (massless particles), V has a maximum at 1.5 rs. For massive parti-
cles it is necessary to distinguish between a high and a low angular momentum
h, measured by the parameter a ≡ r2

s /2h2. For a > 1
6 (low angular momen-

tum) V (r) increases monotonously, and for a < 1
6 (high angular momentum)

V (r) has two extrema at

r±
rs

=
1
2a

(
1 ±

√
1 − 6a

)
; a =

r2
s

2h2
. (4.38)

By using that a < 1
6 it is easy to show that

1.5 rs ≤ r− ≤ 3 rs ; r+ ≥ 3 rs , (4.39)

while in the classical limit (rs → 0, i.e. a → 0):

r− 	 1.5 rs ; r+ 	 rs/a . (4.40)

A classification of the orbits is given in Fig. 4.2. The particle moves on a
horizontal line e2 = constant in a region where e2 ≥ V (r) to ensure that
ṙ2 > 0 in (4.37). Now ṙ may only change sign where e2 = V (r), and the
particle must reverse its radial direction there, as circular orbits at e2 = V (r)
are unstable (see exercise). There are four different types of orbit. Assume for
the sake of argument that we are dealing with a black hole, so that the metric
is valid everywhere. A particle in an α-type orbit will be swallowed by the
hole. A massive particle may be in a β-type orbit, performing an ellipse-like
motion, but the orbit need not be closed – we only know that its r-range is
restricted. Type-γ orbits are hyperbola-like, while particles in a δ-type orbit
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either fall into the hole or escape (r → ∞). A radially moving photon has
V = 0 (h and κ being zero), and is therefore always in an δ-type orbit.
Massive particles can be in a stable circular orbit at r = r+, the smallest of
which is at r = 3rs. Massless particles do not have stable circular orbits, see
exercise.

The next step would be to determine r(t) and ϕ(t) by solving eqs. (4.32),
(4.34) and (4.37). A simpler task (and sufficient for our purposes) is to derive
the shape r(ϕ) of the orbit. This may be done with Binet’s method known
from classical mechanics. We have ṙ = dr/dp = (dr/dϕ) (dϕ/dp) = r,ϕ ϕ̇ =
hr,ϕ/r2. Next, we introduce the variable u = rs/r, and u,ϕ = −rsr,ϕ/r2 =
−u2r,ϕ/rs. Result:

ṙ = hu2r,ϕ/r2
s

r,ϕ = −rsu,ϕ/u2

}
→ ṙ = −hu,ϕ/rs . (4.41)

Substitute this in (4.37) and use h2/r2
s = 1/2a:

(u,ϕ)2 = 2ae2 − (1 − u) (u2 + 2κa) . (4.42)

Take d/dϕ and rearrange terms:

u,ϕ (2u,ϕϕ + 2u − 2κa − 3u2) = 0 . (4.43)

We discard the solution u = constant. The other solution is

u,ϕϕ + u = κa + 3
2u2 ; u = rs/r . (4.44)

κ = 0/1 for photon / massive particle. All relativistic effects are hidden in the
nonlinear term 3

2u2. It may be ignored in the classical limit (since for r � rs →
u � 1 → u2 � u), and then (4.44) has the solution u = κa + C cos(ϕ − ϕ0)
or r(ϕ) ∝ [κa + C cos(ϕ−ϕ0)]−1, which is an ellipse or hyperbola for κ = 1,
and a straight line for κ = 0. In the next section we shall use eq. (4.44) to
derive the perihelium precession and the gravitational deflection of light.

Exercise 4.6: Prove (4.38) to (4.40).

Exercise 4.7: Show that r+ = rs/a is equivalent to Kepler’s third law.

Exercise 4.8: In principle, circular orbits are possible at all locations where
e2 = V (r). Investigate the stability of these orbits.

Hint: In (4.44) the root u,ϕ = 0 has been divided out, so it is safer to use
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V

1

0

m0 = 0
m0 = 0

r+ r

Fig. 4.3. The classical potential V (r) may be obtained by taking the appropriate
limit, see exercise. A massive particle can now only be in a β- or γ-type orbit, and
a photon only in a γ-type orbit (a straight line); δ-orbits are only possible if h = 0
(head-on collision).

(4.37). Take r = r0 + δr and e2 − V (r0) = 0; result: δṙ2 = −V ′
0 δr − 1

2V ′′
0 δr2,

where δṙ2 ≡ (δṙ)2; V ′
0 ≡ dV (r0)/dr0, etc. Two possibilities:

1. V ′
0 �= 0 → δṙ2 = −V ′

0 δr → δr̈ = − 1
2V ′

0 → δr always moves to a region
where V is smaller, hence always unstable.
2. V ′

0 = 0 → δṙ2 = − 1
2V ′′

0 δr2 → δr̈ = − 1
2V ′′

0 δr → stable if V ′′
0 > 0 (in a

minimum), otherwise unstable.
Conclusion: for m0 �= 0 only stable if r = r+ , i.e. at the bottom of the
potential well; for m0 = 0 always unstable.

Exercise. 4.9: We fire a bullet from r = ∞ towards a black hole with impact
parameter d (= shortest distance between particle and hole if the orbit were
a straight line). The bullet is in a γ-orbit and will miss the hole. Next we put
the bullet in a δ-orbit by firing it at a higher velocity (e ↑), see Fig. 4.2. The
bullet will now fall into the hole. Explain this paradox.

Hint: Fig. 4.2 is deceptive in that V (r−) changes as well. Show that V (r−) 	
2/(27a) for a � 1. Hence V (r−)/e2 ∝ (h/e)2. Calculate this constant with
(4.32) and (4.34) by analysing the orbit at large r, where ϕ 	 d/r. Show that
h/e 	 v∞d/c, so that V (r−)/e2 increases as we fire faster, and the bullet
remains in a γ-orbit.

Exercise 4.10: Show that Fig. 4.2 reduces to Fig. 4.3 in the classical limit.

Hint: The transition to classical mechanics is obtained by letting c → ∞.
Show that a, rs, r− → 0, V (r−) → ∞, while r+ remains finite.
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Exercise 4.11: Show that for a massive particle in a circular orbit with radius
r

h =
(

rrs/2
1 − 3rs/2r

)1/2

; e =
1 − rs/r√
1 − 3rs/2r

. (4.45)

Hint: A circular orbit is only possible when r = r+, hence r/rs = (1 +√
1 − 6a )/2a. Solve for a = r2

s /2h2; e from e2 = V (r).

Exercise 4.12: Show that the period of a satellite in a circular orbit with
radius r is given by (∆t = co-ordinate time, ∆τ = proper time satellite):

∆t =
2πr

c

(
2r

rs

)1/2

; ∆τ =
2πr

c

{
2r

rs

(
1 − 3rs

2r

)}1/2

. (4.46)

Hint: (4.34) → 2πr2/c∆τ = h; (4.33) → ∆t/∆τ = e/(1 − rs/r); h and e
from (4.45). Two points: (1). Apparently dτ/dt = (1 − 3rs/2r)1/2 �= √

g00.
Why is (3.2) not valid? (2). (2πr/c)

√
2r/rs = 2πr(GM/r)−1/2 is the classical

expression. Does an observer at r = ∞ (who measures dt) notice any deviation
from classical mechanics?

4.4 The classical tests of GR

The classical tests of GR, in order of their confirmation, are (1) the perihelium
precession of Mercury, (2) the deflection of light in a gravitational field, (3)
the redshift of light escaping from a gravitational well. Much later came (4)
the delay in radar signals reflected by planets. A fifth experiment to measure
the geodesic and Lense-Thirring precession of a gyroscope is now operational
(Gravity Probe B, Ch. 8). For detailed information on these matters we refer
to Will (1993).

In the middle of the 19th century it became apparent that the perihe-
lium precession of Mercury had an unexplained difference of 43′′ ± 0.5′′ per
century. The total precession is 5600′′ per century, of which 5025′′ is caused
by the precession of the equinox (due to the precession of the Earth’s rota-
tion axis), and 532′′ by other planets, mostly Jupiter and Venus. Around that
time Adams (1845) and Leverrier (1846) were able to predict the location of
a then unknown planet (Neptune) from perturbations in the orbit of Uranus.
By analogy it was assumed that the perihelium precession was caused by
zodiacal dust or by an unknown planet (Vulcan) located inside the orbit of
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Fig. 4.4. The Einsteinturm near Potsdam, an elegant design of Erich Mendelsohn,
became operational in 1924, five years after the discovery of the gravitational de-
flection of light. It was originally built to measure the gravitational redshift in the
solar spectrum. Photo: R. Arlt, AIP.

Mercury. However, the mass of the zodiacal dust was far too small and Vulcan
has never been found.

Another possibility for a classical explanation of the perihelium preces-
sion is the fact that the mass distribution of the Sun has a nonzero quadrupole
moment due to rotation. The gravitational potential has a small extra term:
Φ(r) = −(GM/r)[1 + 1

2J2(R�/r)2] in the equatorial plane, where J2 is the
dimensionless quadrupole moment. This extra term ∝ r−3 causes a preces-
sion. Modern measurements place the value of J2 in the range 10−6−10−7, in
which case the quadrupole moment will contribute at most 0.1′′ per century.2

The dependence of the precession rate on the semi-major axis � is �−7/2 for
a quadrupole moment and �−5/2 for GR. The observed perihelium precession
of Venus and the Earth suggests an �−5/2 dependence.3

The fact that light rays are deflected in a gravitational field was demon-
strated during the solar eclipse of 1919, and in those days after World War
I that achievement generated a media-hype avant la lettre. The observations
are very difficult and later experiments resulted in values ranging from 1.4′′

to 2.7′′. In 1952 a value of 1.7′′ ± 0.1′′ was obtained. Nowadays Very Long
Baseline Interferometry (VLBI) is used to measure the change in the position
of a number of bright quasars in the ecliptic plane as the Sun passes by. These

2 see Godier, S. and Rozelot, J.-P., A & A 350 (1999) 310; Will (1993) § 7.3.
3 see Adler et al. (1965) p. 202; Foster and Nightingale (1989) p. xiii.
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observations have the advantage of being very accurate, and it is no longer
necessary to wait for an eclipse. The result is 1.760′′ ± 0.016′′.4

Attempts to measure the gravitational redshift initially employed the so-
lar spectrum. The effect is small: the solar spectral lines have a width of ∼ 10
km s−1, while the redshift is only 600 m s−1. Moreover, there is a convective
blueshift (rising gas being hotter than sinking gas) of about the same mag-
nitude. Calibration is possible with the help of the Doppler shift induced by
the known motion of the Earth with respect to the Sun. But due to lack of
stability and other systematic effects the redshift could not be measured. It
was only in 1962 that the gravitational redshift was convincingly detected
in the solar spectrum. The Pound-Rebka experiment (1960) was actually the
first quantitive measurement of the effect. In 1971 portable caesium clocks
have been flown around the world on commercial jet flights, eastbound and
westbound, and their readings were compared with a reference clock on the
ground.5 Such an experiment measures a mix of gravitational and special-
relativistic redshifts. Gravity Probe A, a rocket experiment using a hydrogen
maser clock measured the gravitational redshift with a precision of 10−4 in
1979.6

Shapiro proposed a fourth test in 1964: the delay of radar signals, and in
retrospect it is amazing that this test had not been thought of earlier. The
idea is that in the Schwarzschild metric the distance between r1 and r2 is
larger than r2 − r1 (exercise 4.4), so that light needs more time to travel the
distance between the points. This has been verified in radar reflection experi-
ments on Mercury and Venus and by observations of the binary pulsars PSR
1534+12 and PSR 1855+09. Radio echo observations of VIKING attained a
precision of 10−3. Data from the Cassini spacecraft as it passed behind the
Sun on its way to Saturn have recently improved the precision to 2 × 10−5. 7

Gravitational deflection of light

We now calculate the deflection angle of starlight from eq. (4.44), see Fig. 4.5.
The classical photon orbit follows by omitting the nonlinear term: u,ϕϕ +u =
0 → u = const·cos ϕ. We write this zero-order solution as u0(ϕ) = ζ cos ϕ, and
ζ = rs/r0 is the small parameter in the problem. This solution is a straight
line r cos ϕ = r0. Now substitute u = u0 + δu in (4.44) and linearise:

δu,ϕϕ + (1 − 3u0) δu = q(ϕ) ; q(ϕ) = 3
2u2

0 . (4.47)

We need the solution of this equation with initial conditions δu(0)
= δu,ϕ(0) = 0, which we may find with the help of the method of variation of
4 see Misner et al. (1971) p. 1104 and Will (1993) Ch. 1 and 7.
5 Hafele, J.C. and Keating, R.E., Science 177 (1972), 166 and 168.
6 Vessot, R.F.C. and Levine M.W., General Relat. & Gravit. 10 (1979) 181.
7 Bertotti, B. et al., Nature 425 (1993) 374.
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r0
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M

classical orbit
r cos j = r0

d

j

Fig. 4.5. Geometry of the deflection of light by the gravitational field of a central
mass M . The deflection angle is 2δ.

constants (see exercise):

δu = s(ϕ)
∫ ϕ

0

c(ψ)q(ψ) dψ − c(ϕ)
∫ ϕ

0

s(ψ)q(ψ) dψ , (4.48)

where s(ϕ) and c(ϕ) are two independent solutions of the homogenous
equation f,ϕϕ+(1−3ζ cos ϕ) f = 0. These are the so-called Mathieu functions:

s(ϕ) = sinϕ + O(ζ) ; c(ϕ) = cos ϕ + O(ζ) . (4.49)

The O-terms are actually series in sin nϕ or cos nϕ of order ζ or smaller, whose
explicit expression we fortunately don’t need. The whole solution is now

u = ζ cos ϕ +
3ζ2

2

{
s(ϕ)

∫ ϕ

0

c(ψ) cos2 ψ dψ

− c(ϕ)
∫ ϕ

0

s(ψ) cos2 ψ dψ

}
. (4.50)

We demand that u = 0 (r → ∞) for ϕ = ±(π/2+δ). As we expect δ ∼ ζ � 1,
we expand up to first order in δ and ζ. Then cos(π/2+δ) = −δ. Since there is
already a factor ζ2 in front of {· · ·} we may take ϕ = π/2, s = sin and c = cos
inside {· · ·}. This simplifies matters considerably:

0 	 − ζδ +
3ζ2

2

∫ π/2

0

cos3 ψ dψ = −ζδ + ζ2 , (4.51)

or δ = ζ = rs/r0. The total deflection angle δψ is 2δ:
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δψ = 2rs/r0 . (4.52)

This is twice as large as the result of a classical computation8 that treats
the photon as a massive particle with speed c. The deflection is therefore
truly determined by the shape of null geodesics in a curved spacetime. For
the eclipse geometry we have δψ = 2rs/R� = 2 × 2.95 km/6.96 × 105 km
= 8.48 × 10−6 ∼= 1.75′′.

The HIPPARCOS satellite measured stellar positions with an accuray of
∼ 0.002′′. At this level of precision the deflection of light by the Sun can
be detected over half of the sky! For let’s suppose HIPPARCOS is looking
perpendicularly to the Sun-Earth line. The deflection angle is then δψ = δ =
rs/r0 where r0 = 1 AU: δψ = 3/(1.5 × 108) = 2 × 10−8 ∼= 0.004′′.

Binary pulsars

The derivation of the perihelium precession proceeds in a similar fashion as
the deflection of light (see exercise). Much larger relativistic precessions have
been measured in binary stellar systems consisting of a neutron star which is
also a pulsar and another neutron star. These binary systems are laboratory
test equipments on a cosmic scale that may be used to verify GR with greater
accuracy and over a wider parameter range than is possible in solar system
experiments. Six pulsars have now been found to be a member of a binary
neutron star system. The most famous one is PSR 1913+16. The masses of
the components are 1.441M� (pulsar) and 1.387M� (companion); ε = 0.617;
orbital period = 27907 s (	 7.8 hour); semi-major axis � = 1.95 × 106 km
(1.4 solar diameters); periastron precession = 4.22662◦ per year.9 The recent
discovery10 of a new binary pulsar PSR J0737 3039 caused great excitement as
the companion turned out to be a pulsar as well.11 The system has an orbital
period of only 2.45 hour and is much closer to us than PSR 1913+16, thus
allowing even more precise tests of GR. The periastron precession is predicted
to be 16.9◦ per year!

Exercise 4.13: Show that (4.48) is the required solution of (4.47).

Hint: After substitution in the equation it is found that the Wronskian W ≡
c s,ϕ − s c,ϕ must be equal to 1. It follows from the homogenous equation that
W,ϕ = 0, hence W = 1 is only a normalisation.

8 made by Von Soldner in 1801, see Will, C.M. Am. J. Phys. 56 (1988) 413.
9 see Taylor, J.H. and Weisberg, J.M., Ap. J. 345 (1989) 434; Will (1993), Ch. 12

and p. 343.
10 Burgay, M. et al., Nature 426 (2003) 531.
11 Lyne, A.G. et al., Science 303 (2004) 1153.
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Exercise 4.14: Show that the perihelium precession is given by

ωp =
3(GM�)3/2

c2(1 − ε2) �5/2
rad s−1 , (4.53)

and that ωp 	 43′′ per century for Mercury; � = the semi-major axis and ε =
the excentricity.

Hint: The classical orbit u0(ϕ) follows from (4.44): u,ϕϕ + u = a → u =
a(1 + ε cos ϕ) ≡ u0(ϕ). The parameter a ∼ rs/� � 1 serves now as the small
parameter. The excentricity ε need not be small. Insert u = u0 + δu in (4.44)
and linearise → (4.47), except that q(ϕ) and the O-terms in (4.49) are different
functions of ϕ. The analysis proceeds quite analogously up to (4.50). We now
need du/dϕ :

du

dϕ
= −aε sin ϕ +

3a2

2

{
ds

dϕ

∫ ϕ

0

c(ψ)f(ψ) dψ − dc

dϕ

∫ ϕ

0

s(ψ)f(ψ) dψ

}
,

with f(ϕ) = (1 + ε cos ϕ)2; du/dϕ = 0 for ϕ = 0, and we require it to be zero
for ϕ = 2π + δ as well. Anticipate δ ∼ a � 1, and include terms up to first
order in δ. Take ϕ = 2π, c = cos, s = sin inside {· · ·}:

0 	 − aεδ +
3a2

2

∫ 2π

0

(1 + ε cos ψ)2 cos ψ dψ

= − aεδ + 3a2ε

∫ 2π

0

cos2 ψ dψ = − aεδ + 3a2επ .

Only the term 2ε cos2 ψ contributes to the integral. Now ωp = δ/P where
P = period and δ = 3πa = 3πr2

s /2h2. And ch = r2dϕ/dτ 	 r2dϕ/dt = 2O/P
with O = π�2

√
1 − ε2 = area of ellipse (dτ → dt results only in higher order

corrections). Kepler III: �3/P 2 = GM�/4π2 = c2rs/8π2 → h2 = �(1−ε2) rs/2.
Mercury: � = 0.387 AU; ε = 0.206; P = 88 days; rs = 2.95 km; ωp =
6.60 × 10−14 rad s−1 ∼= 42.9′′ per century.

4.5 Gravitational lenses

The relativistic deflection of light causes a variety of wonderful effects. The
gravitational field of a neutron star is so strong that it distorts and enlarges
its own image to a considerable extent. Fig. 4.6 shows the image of a neu-
tron star as it would look without relativistic effects, and the real image. Star
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Fig. 4.6. The relativistic looks of a neutron star with radius R = 2rs. To the left,
the image without relativistic effects. The real image with the light deflection by
the strong gravity field included is shown on the right. The image magnification is
computed in exercise 4.16. From Nollert, H.P., et al., A. & A. 208 (1989) 153.

spots are much longer visible.

Einstein noted in 1936 that when two stars are positioned exactly behind
each other, on the same line of sight, the light of the more distant star assumes
the form of a ring around the nearby star, see Fig. 4.7. The chance of such
a coincidence is very small. Chaffee (Sci. Am., Nov. 1980) gives a fascinating
account of the discovery of the first gravitational lens in 1979. It concerns
two quasars Q0957+561 A and B with an angular separation of 6′′ that have
the same spectrum (z = 1.41). They turn out to be images of one and the
same quasar whose light is deflected by an intervening galaxy at z = 0.36.
It has been shown that gravitational lensing may be treated as a problem in
geometrical optics in flat space with a refractive index 1− 2Φ(r)/c2, where Φ
is to be gauged to zero at infinity. Since Φ is negative, the refractive index is
larger than 1, which suggests that gravitational lenses may be modelled by a
properly designed glass lens. According to the theory an odd number of im-
ages is formed, distorted and enlarged to different degree, but not all images
may be visible. Later, arcs were discovered (images of a galaxy formed by a
cluster located between the source and the Earth), and radio rings (Einstein
ring image of compact radio source formed by intervening galaxy). At present
of the order of 100 gravitational lenses are known.

Gravitational lenses are interesting for a number of reasons. In principle
it is possible to determine the mass of the lens, including all dark matter.
Another application is distance determination. The geometry of the object-
lens-images system, see Fig. 4.7, can be derived from the angular distance
between the images, the mass distribution of the lens, and the ratio of the
distances of images and lens (= redshift ratio). The whole system may thus
be drawn to scale. Since most quasars are variable, we may expect to observe
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Fig. 4.7. Various gravitational lensing effects, see text.

the effect of path length differences, and this has now been seen in the dou-
ble quasar Q0957+561 A and B. Intensity variations of Q0957+561 A lead
those in Q0957+561 B by 417 ± 3 days.12 This provides the missing absolute
distance measure, so that now all distances are known. In principle it should
be possible to measure the distance of the quasar in this way, independently
of traditional astronomical methods. Such an independent measurement is of
great importance for the determination of the Hubble constant H0, which in
turn sets the age and size of the universe.13

12 Kundić, T. et al., Ap. J. 482 (1997) 75.
13 The literature on gravitational lenses is enormous. Some useful references

are: Schneider, P., Ehlers, J. and Falco, E.E.: 1992, Gravitational lenses;
Blandford, R.D. and Narayan, R.: 1992, A.R.A.A. 30, 311; Paczyński, B.:
1996, A.R.A.A. 34, 419; Wambsganss, J., Living Rev. Relativity 1 (1998) 12
(http://www.livingreviews.org/lrr-1998-12); Mellier, Y.: 1999, A.R.A.A. 37, 127;
Narayan, R. and Bartelmann, M.: 1999, in Formation of Structure in the Universe,
A. Dekel and J.P. Ostriker (eds.), Cambridge U.P., p. 360.
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Fig. 4.8. A gravitational lens of the Einstein cross type. The yellow-red galaxy in
the centre of this Space Telescope image acts as a gravitational lens at z = 0.81,
forming four visible images (blue dots) of a quasar at z = 3.4 that lies behind it and
is invisible. The horizontal image size is 6.5′′ (see Ratnatunga, K.U. et al., Ap. J.
453 (1995) L5; Crampton, D. et al., A & A 307 (1996) L53). Credit: NASA, HST,
K. Ratnatunga and M. Im (JHU).

Microlensing

The lenses referred to above are macrolenses: the lensing is caused by the
smooth mass distribution of the lens. Microlensing of compact (i.e. not ex-
tended) sources occurs when a point mass (a stellar-size object) crosses the
light path of one of the images to the observer. For a brief time several sub-
images are formed, but their separation is so small that only a temporary
change in brightness of the image can be observed. The duration of an event
is hours to ∼ 100 days and is, for a given lensing geometry, mainly deter-
mined by the lens mass. Microlensing was first discovered in Q2237+0305
(the ‘Einstein cross’). The quasar images show uncorrelated brightness vari-
ations believed to be due to individual stars in the lensing galaxy crossing
the line of sight. The most popular application is the search of galactic mi-
crolenses, which might reveal otherwise invisible dark objects. The idea is to
use a CCD camera to monitor millions of stars in dense stellar fields in the
Large Magellanic Cloud (LMC) or the galactic bulge, and to search for the
characteristic brightness variations (symmetric time profile, independent of
colour).

OGLE II saw about 100 events per year, in fields covering 11 square de-
grees on the galactic bulge (∼ 2 × 107 stars). The event characteristics are
constistent with the lenses being ordinary low mass stars, but the number of
events is larger than expected. This has been interpreted to indicate that our
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Fig. 4.9. Geometry of the magnification of a neutron star image in Fig. 4.6.

galaxy has a barred structure at its centre, protruding towards the Sun. The
MACHO project has seen about 15 microlensing events in 5.7 year in fields
covering the LMC containing 1.2× 107 stars.14 About 1/4 of these events can
be explained as lensing by ordinary halo stars, and the remainder is reputed
to lensing by MACHOs (= MAssive Compact Halo Object, such as brown
dwarfs, neutron stars, old white dwarfs, black holes, etc.). About 20% of the
expected galactic dark matter halo would be made of 0.3−0.7M� MACHOs.
But it cannot be excluded that the lenses are low mass stars in an LMC halo.

Exercise 4.15: Show that for photon orbits of the γ- and δ-type

e = h/d , (4.54)

d is the impact parameter, the shortest distance between photon and the origin
if the orbit were a straight line. Both e2 = (h/d)2 and V = (1 − rs/r)(h/r)2

are now ∝ h2, thus permitting a comparison of their relative values in Fig. 4.2.

Hint: Fig. 4.9 applies to ingoing as well as outgoing photons. A line through
the origin parallel to the orbit at large r (where it is straight) determines d;
d may have any value – at this point we are not interested in the orbit close
to the central object. For r � rs (small ϕ): r 	 d/ϕ or u = rs/r 	 rsϕ/d.
Hence u → 0 and u,ϕ → rs/d. Together with κ = 0 this fixes the value of the
constant 2ae2 in (4.42): 2ae2 = (rs/d)2; 2a = (rs/h)2 → e2 = (h/d)2.

Exercise 4.16: With reference to Fig. 4.6 and 4.9, show that the gravitational
field magnifies the image of a neutron star by a factor

d/R = (1 − rs/R)−1/2 , (4.55)

14 Alcock, C. et al., Ap.J. 542 (2000) 281.
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which amounts to 1.41 for R = 2rs, the value corresponding to Fig. 4.6.
Measure the diameters and verify if Nollert et al. did a proper job.

Hint: The image size is determined by the null geodesic g leaving the surface
tangentially (why?) and approaching asymptote L for r → ∞. Infer from the
previous exercise that g obeys the equation

(u,ϕ)2 + u2 − u3 = (rs/d)2 . (4.56)

Evaluate (4.56) at the point where the ray leaves the surface. Tangential
implies u,ϕ = 0, while u = rs/R → (rs/R)2 − (rs/R)3 = (rs/d)2, etc.





5

Compact Stars

The Schwarzschild metric is only valid in vacuum, outside the star, but not in
the stellar interior. Inside the star the metric is different, and in this chapter
we shall investigate how relativistic effects influence the structure of a star.
For main-sequence stars and even for white dwarfs the relativistic effects are
small. In neutron stars, however, they play a dominant role. White dwarfs and
neutron stars are two possible end products of stellar evolution. The third
possibility is a black hole, an object that is smaller than its Schwarzschild
radius.

5.1 End products of stellar evolution

The first equilibrium state in stellar evolution is the hydrogen burning phase.
For this to happen, the star must have a minimum mass of 0.08M�.1 The
fusion of hydrogen produces helium and during this period the star is on the
main sequence in the Hertzsprung-Russel diagram. When the stellar core runs
out of hydrogen, it will contract and become hotter as it does so. This may
be understood with the virial theorem:

Et = − 1
2Ep ; Etot ≡ Ep + Et = 1

2Ep , (5.1)

where Ep, Et and Etot are the potential, the thermal and the total energy of
the star, respectively (Ep < 0; for definitions and proof see exercise). Now,
Etot will decrease, because the energy production by nuclear fusion diminishes
while the radiative energy loss continues unabated. Hence Ep ↓ and Et ↑. The
stellar core contracts (Ep ↓), and the density and temperature will rise (adi-
abatic compression; Et ↑). The star spends half of the liberated potential
energy on radiative losses and the other half on compression (increase of Et).

1 Stars lighter than 0.08 M� are called brown dwarfs – they undergo hardly any
evolution.
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Fig. 5.1. A heavy evolved star consists of several shells, with fusion reactions in
progress in the boundary layers (not to scale).

After the main sequence phase the core contracts and hydrogen proceeds
in a shell. The outer layers expand, and the star becomes a red giant. The elec-
tron gas in the core becomes degenerate, and if M ∼< 0.5M� the degeneracy
pressure is able to withstand further contraction. In heavier stars the compres-
sion of the core continues until Tc ∼ 108 K is reached, at which point fusion
of helium sets in, through the triple-alpha reaction (3 4He → 12C+γ ; 16O is
also formed). Contraction follows once more when the helium in the core gets
depleted. Stars heavier than about 6M� attain a temperature Tc ∼ 8 × 108

K, which is sufficient to switch on carbon fusion. The next stage would be
16O fusion, etc. Because all these reactions are strongly dependent on tem-
perature, the star acquires a shell structure. The more massive the star, the
more layers it will develop in due course of time, see Fig. 5.1.

Apart from rotation and magnetic fields, mass loss is a major compli-
cation when calculating stellar evolution. Mass loss occurs in the giant phase
(by radiative pressure), but also due to instabilities during the shell burning
stages. Stars with an initial mass below ∼ 6M� are thought to lose enough
mass to bring it below the Chandrasekhar limit of 1.4M�. The mass lost is
often visible as a beautiful planetary nebula, see Fig. 5.3. These stars will
end their life as a white dwarf, with a core of He, or C and O, depending
on the initial mass. The remaining energy is radiated away, and the white
dwarf just cools down progressively. The electron degeneracy pressure is al-
most independent of temperature and remains therefore in equilibrium with
the gravitational force. Stars with 6∼< M/M� ∼< 8 have a degenerate core at
the beginning of carbon fusion. The fusion switches on explosively because
the pressure is independent of the temperature. This is known as the ‘carbon
flash’. These stars probably evolve into white dwarfs as well.
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Fig. 5.2. Stars are born out of the interstellar medium and spend the largest fraction
of their life on the main sequence with hydrogen fusion in the core. After the main
sequence stage nuclear fusion proceeds in shells. The star is then a (super)giant, and
loses mass through a strong stellar wind. Ultimately, light stars (progenitor mass
< 8 M�) shed a planetary nebula and become a white dwarf. Heavy stars explode
as a supernova leaving an expanding remnant and a neutron star or a black hole.
Stars with progenitor mass < 0.8 M� evolve so slowly that they are all still on the
main sequence. Stellar evolution thus recycles and enriches the interstellar medium,
and locks up matter in the four types of stellar remnant at the top of the diagram.
After Bless (1995).

Heavy progenitors

The life of stars heavier than about 8M� is radically different and vaguely
reminiscent of human tragedy – they carry their bulk with dignity until they
can no longer cope and explode. The cores of these stars do not become de-
generate and nuclear fusion continues until elements of the iron-group are
formed. Further extraction of energy by fusion reactions is not possible, be-
cause nuclei of the iron-group have the largest binding energy per nucleon,
Fig. 5.4. The star is now irrevocably on its way to total destruction. Due to
the large mass of the star the compression of the core (1 − 2M�) contin-
ues until Tc ∼ 5 × 109 K. At that point much energy is lost through photo-
desintegration of 56Fe, an endothermic reaction (56Fe+γ → 13 4He+4n−124
MeV), and by the emission of neutrinos. The latter because the high Fermi
energy of the electrons induces repeated inverse β-decay reactions of the type
e− +(Z,A) → (Z−1, A)+νe ↑. Nuclei of the type (Z−k,A) are generally un-
stable and decay under emission of neutrons. The situation is now as follows.
The electron density decreases and so does the associated electron pressure
that sustained the core. At the same time free neutrons are formed in pro-
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Fig. 5.3. End stages of stellar evolution (1). Hubble Space Telescope image of the
planetary nebula NGC 6543, also known as the Cat’s Eye nebula, at a distance of
about 1 kpc. The nebula is ejected spasmodically from the central bright star as it
developes into a white dwarf. Horizontal image size 1.2′. Credit: NASA, ESA, HEIC,
and the Hubble Heritage Team.

gressively larger quantities. This runaway process seals the fate of the star.
Eventually, the core contracts rapidly and collapses in about 0.1 s until nu-
clear densities are attained, 1014 − 1015 g cm−3, and the neutrons become
degenerate. The core now consists of a degenerate neutron gas, with a small
amount of protons and electrons. The neutron degeneracy pressure is suffi-
cient to halt further compression and a neutron star is formed. This is in fact
a giant atomic nucleus held together by gravity rather than by the strong nu-
clear force. The gravitational energy (∼ 1053 erg) is released in the form
of neutrinos. These are exuded by the core in about 10 s, and escape al-
most all into space. The neutrino luminosity reaches therefore a brief but
impressive peak of ∼ 1045 W. The collapsing outer layers bounce off the hard
neutron core and a strong shock begins to propagate outwards. This shock
prevents further collapse of the outer layers, aided by the capture of a small
fraction of the escaping neutrinos. The collapse is reversed and a colossal
explosion ensues, marking the birth of a supernova that radiates ∼ 1051

erg in the optical. The supernova remnant continues to expand, Fig. 5.5. In
very heavy stars (for progenitor masses above 30M�) the outer layers are
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Fig. 5.4. Binding energy per nucleon as a function of atomic number. Quantum
effects make that the curve is in reality not as smooth as indicated. Broadly speaking,
energy is released in fusion reactions of nuclei lighter than iron. Beyond the iron-
group the curve rises again due to the increasing Coulomb interaction of the protons.
These nuclei release energy by fission.

only partially stopped. A black hole may form when the mass of the col-
lapsed core exceeds the maximum mass of a neutron star (about 2 M�). The
progenitor mass required for black hole formation is not well known. Compact
objects, finally, are quite numerous: about 5% of all objects of stellar-size mass
in our galaxy is estimated to be a white dwarf, ∼ 0.5% a neutron star and
(1 − 5) × 10−4 are black holes.

Mass transfer in binaries

In a binary system the evolution of the components may be drastically al-
tered by mass exchange. Matter accreting onto a white dwarf may cause
various phenomena: cataclysmic variables (optical / UV emission of an ac-
cretion disc), thermonuclear fusion of the accreting matter, either steady (the
supersoft X-ray sources), or in quasi-periodic explosions (a nova), or complete
disruption of the star leaving nothing behind (type Ia supernova). Evolution
of binary systems may produce quite exotic systems. Neutron star binaries,
for example, such as the double pulsar PSR 1913+16, are believed to evolve
from a binary system consisting of two ordinary massive stars. The more
massive of the two evolves faster and explodes as a supernova, leaving be-
hind a neutron star. After some time the lighter star becomes a red giant.
The neutron star enters into the expanding envelope of its companion and
begins to accrete matter. Tidal friction leads to the formation of a narrow
binary system, and blows away the envelope. The system now consists of the
red giant’s helium core and the neutron star. If the mass of the helium star
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Fig. 5.5. End stages of stellar evolution (2). The supernova remnant Cassiopeia A,
the relic of a massive star, as imaged by the Chandra X-ray Observatory. This super-
nova exploded around 1670, at a distance of about 3 kpc. It should have been almost
as bright as Venus, but no ‘new star’ was reported. The green shell is synchrotron
radiation from the outer shock wave. The ejected matter disperses relatively quickly
into the interstellar medium. It is not clear whether the bright dot in the centre is the
neutron star, because it does not show any periodicity. Red is Si emission (1.8− 2.0
keV), green is 4.2 − 6.4 keV continuum, blue is Fe (6.5 − 7.0 keV). Exposure time
106s. Horizontal image size 8′. See Hwang, U. et al., Ap. J. 615 (2004) L117; Vink,
J., New Astr. Rev. 48 (2004) 61. Credit: U. Hwang, J.M. Lamming et al.

is above 2.5M� it eventually explodes as a supernova as well, and a narrow
neutron star binary may result if the system is not disrupted. If the mass of
the helium star is below 2.5M� it evolves into a white dwarf, and the end
product may be a white dwarf-neutron star binary.

Neutron star observations

Our galaxy contains an estimated number of ∼ 108 − 109 neutron stars, and
most of these are invisible to us. There are basically three ways to observe
neutron stars. Radio pulsars are rotating neutron stars equipped with a radio
beacon that sweeps periodically over the Earth. There are about 1500 known
pulsars, with periods ranging from 8.5 s down to 1.55ms. Most are located
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in or close to the galactic disc. Precise timing of pulsars has yielded a wealth of
information on neutron stars.2 Next are the X-ray binaries, about 200 in our
galaxy, in which a primary star loses mass that swirls around in an accretion
disc, eventually falling onto the compact secondary. In doing so, the matter
gets heated to X-ray temperatures. The secondary is usually a neutron star
and in some cases a black hole.3 Low mass X-ray binaries feature a low-mass
solar-type primary with Roche lobe overflow. The X-ray emission is continu-
ous, in most cases with occasional bursts. These so-called X-ray bursters are
due to quasi-periodic runaway nuclear fusion of the accreting matter onto a
neutron star companion. High mass X-ray binaries have a massive primary
star with a strong wind, part of which accretes on a neutron star (these are
all X-ray pulsars), in some cases on a black hole. Finally, X-ray emission of a
few solitary nearby neutron stars has been detected. The nature of the X-ray
emission is not understood – they could be young cooling neutron stars, or
neutron stars accreting from the interstellar medium.4

5.2 The maximum mass Mc

The masses of white dwarfs and neutron stars are bounded by an upper limit
which is a direct consequence of relativistic quantum statistics as shown by
Landau in 1932. The star is a sphere of radius R containing A baryons that
generate the mass and gravity, and ∼ A fermions providing the degeneracy
pressure that balances gravity. White dwarfs: ∼ A/2 protons, ∼ A/2 neutrons
and ∼ A/2 electrons; neutron stars: A neutrons. The fermions are assumed
to be free particles in a potential well with volume V ∼ R3. Every element
d3r d3p ∼ �

3 of phase space may contain at most one fermion (we blissfully
ignore spin). In a cold Fermi gas all states with |p| ≤ pf are occupied.5 The
total number of fermions is A ∼ (pfR)3/d3rd3p = (pfR/�)3, so that pf ∼
�A1/3/R. In case of relativistic degeneracy the Fermi energy is Ef ∼ pfc ∼
�cA1/3/R. For non-relativistic degeneracy (that is, for R > certain Rc at
given A) we have Ef ∝ pf

2 ∝ R−2. The potential energy per baryon is
Eg ∼ −GMmb/R = −Gmb

2A/R. The total energy per baryon is:6

2 Lyne, A.G. and Graham-Smith, F.: 1998, Pulsar Astronomy, Cambridge U.P.
3 See Compact Stellar X-ray Sources, W.H.G. Lewin, and M. van der Klis (eds.),

Cambridge U.P., to appear.
4 Treves, A. et al., P.A.S.P. 112 (2000) 297; Haberl, F., Adv. Space Res. 33 (2004)

638.
5 The Fermi energy turns out to be so large that the energy distribution of the

fermions is hardly affected by temperatures in the range ∼< 108 K.
6 In white dwarfs Ef refers to the electrons, that have negligible Eg, and Eg to the

baryons, which have negligible Ef . The meaning of E is then the total energy of
all particles divided by the number of baryons.
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Fig. 5.6. Left: Ef and Eg as a function of R for given A. Center: the total energy
E per baryon for small A, and for large A to the right.

E 	 Ef + Eg ≈
{

a/R − b/R R < Rc ;

aRc/R2 − b/R R > Rc ,
(5.2)

where a = �cA1/3 and b = Gmb
2A, see Fig. 5.6. It may be inferred from (5.2)

that a relativistic star has a limiting mass of about 2M�, and that the radius
of a white dwarf is about 5000 km and the radius of a neutron star about 3
km (see exercise). More detailed calculations obtain Mc 	 1.4M� for white
dwarfs. This is referred to as the Chandrasekhar limit. The maximum mass of
a neutron star depends on the equation of state p(ρ), which is not well known
for ρ ∼ 1014 − 1015 g cm−3, see § 5.5.

Exercise 5.1: Prove the virial theorem (5.1) for non-degenerate stars.

Hint: If n and 3
2nκT are the particle and energy density, then Et =

∫ R

0
( 3
2nκT )·

4πr2dr. Now nκT = p = pressure. Substitute and integrate partially: Et =
− 1

2

∫ R

0
(dp/dr) 4πr3 dr. Hydrostatic equilibrium: dp/dr = −GM(r)ρ/r2 (for

slow rotation!) → M(r) =
∫ r

0
4πr2ρdr. Result: Et = 1

2

∫ R

0
GM(r)·dM(r)/r ≡

−1
2Ep.

Exercise 5.2: Show that compact stars have a maximum mass Mc and a
typical radius Rc which are entirely determined by fundamental constants:

Mc ∼
(

�c

Gmb
2

)3/2

mb 	 1.9M� , (5.3)

Rc ∼
(

�c

Gmb
2

)1/2
�

mc
. (5.4)
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Rc ∼ 3 km for m = mb (neutron star) and 5000 km for m = me (white
dwarf).

Hint: Take R > Rc and dE/dR = 0 → R0 = (2a/b)Rc ∝ A−2/3; R0 decreases
as A ↑. But R0 ≥ Rc → a ≥ b (ignore the factor of 2). For a ≤ b we
get therefore Fig. 5.6, right; equilibrium is not possible when A is too large.
Hence A ≤ Ac = (�c/G)3/2m−3

b and Mc = Acmb. Take mb = neutron mass.
Since R0 	 Rc, the value of Rc is roughly the one at which the degeneracy
becomes relativistic: Ef ∼ �cAc

1/3/Rc ∼ mc2. In retrospect we see that Mc =
(Rc/λc)3mb with λc = �/mc = Compton wavelength. Interpretation?

5.3 The Tolman-Oppenheimer-Volkoff equation

We shall now derive the structure equations for spherically symmetric rela-
tivistic stars in hydrostatic equilibrium. We note that the interior metric of
the star may still be written in the form (4.2) – (4.3), since these have been
derived solely from symmetry arguments that apply here as well. Our task is
therefore to find the new functions λ(r) and ν(r) within the star with the help
of the field equations. We begin by elaborating the stress-energy tensor Tµν =
ρuµuν + (p/c2)(uµuν − gµν) according to (3.57). Since the mass distribution
is stationary we have 1 = uµuµ = u0u0 = g00(u0)2 = (u0)2/g00 = e−2ν(u0)2

according to (4.3) (g00 = 1/g00 because gαβ is diagonal). Consequently,

uµ = (eν , 0, 0, 0) . (5.5)

With (4.3) we get

T00 = ρ e2ν ; T11 = (p/c2) e2λ ;

T22 = pr2/c2 ; T33 = (pr2/c2) sin2 θ .

}
(5.6)

It follows that
T 00 = T00/(g00)2 = ρ e−2ν ;

T 11 = T11/(g11)2 = (p/c2) e−2λ ;

T 22 = p/(c2r2) ;

T 33 = p/(c2r2 sin2 θ) .

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5.7)

Both p and ρ are functions of r. Use has been made of T 00 = g0µg0νTµν =
(g00)2T00 = T00/(g00)2, and likewise for T 11, etc. Because Gµν

:ν = 0 we have
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Tµν
:ν = 0, and this equation determines the structure of the star (§ 3.6). An

exercise invites the reader to show that this leads to

(ρc2 + p)
dν

dr
+

dp

dr
= 0 . (5.8)

We use the covariant form of the field equations (3.42), Gµν = −(8πG/c2)Tµν .
Only µ = ν = 0 and µ = ν = 1 turn out to give an independent contribution,
and we begin with µ = ν = 0. From (4.20) and (5.6):

d
dr

r (1 − e−2λ) =
8πG

c2
r2ρ . (5.9)

Define the functions m(r) and M(r):

m(r) ≡ GM(r)
c2

≡ 1
2r (1 − e−2λ) , (5.10)

and we may now write (5.9) as

dM

dr
= 4πr2ρ ; 0 ≤ r ≤ R . (5.11)

R = stellar radius. Solve (5.10) for e−2λ and use (4.3):

g11 = − e2λ = −
{

1 − 2m(r)
r

}−1

. (5.12)

This amounts to a generalisation of g11 from (4.29). Continuity of the interior
and exterior metric in r = R requires gint

11 = gext
11 , the latter given by (4.29),

and leads to

M(R) = M = mass of the star ;

2m(R) = rs = Schwarzschild radius .
(5.13)

Next comes µ = ν = 1. From (4.21) and (5.6):

1
r2

(e2λ − 1) − 2
r

dν

dr
= − 8πG

c2

p

c2
e2λ . (5.14)

Multiply (5.14) with e−2λ, then substitute e−2λ = 1− 2m(r)/r, and solve for
dν/dr:

dν

dr
=

m + (4πG/c4) pr3

r(r − 2m)
. (5.15)

Finally we eliminate dν/dr with (5.8), and after some algebra we get:
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dp

dr
= −

{
p + ρc2

}{
m + (4πG/c4) pr3

}
r (r − 2m)

= −
G
(
ρ + p/c2

) (
M + 4πr3p/c2

)
r2 (1 − 2m/r)

. (5.16)

This is the Tolman-Oppenheimer-Volkoff (TOV) equation. In the non-relati-
vistic limit (m � r ; p � ρc2) the classical equation dp/dr = −GM(r)ρ/r2 for
hydrostatic equilibrium re-emerges. Equations (5.11) and (5.16) determine the
structure of a relativistic star in hydrostatic equilibrium. This is elaborated in
the next sections. Outside the star the Schwarzschild metric applies. It turns
out that GR-corrections are very small in white dwarfs, as may be anticipated
from the value of Φ/c2 (cf. Procyon B, Table 3.1). For that reason this chapter
is mainly about neutron stars. However, GR-corrections are important for
topics like the stability and the oscillation frequencies of white dwarfs.

An interesting point is the dual role of the pressure in (5.16). On the one
hand the pressure gradient dp/dr delivers the force that prevents the star from
collapsing. On the other hand p occurs in the stress-energy tensor Tµν and
acts therefore as a source of gravity, because pressure is a form of potential
energy. These are the terms p/c2 on the right side of (5.16). They increase
−dp/dr and therefore p. For a given density profile ρ(r) the gradient −dp/dr
is always larger than in the case of classical gravity. The central pressure is
therefore larger as well. The matter in a relativistic star has to withstand
much larger internal forces to maintain hydrostatic equilibrium. The fact that
neutron stars have a maximum mass is a direct consequence thereof.

Physical mass and bare mass

According to (5.11) and (5.13) the total or gravitational mass of the star is

M =
∫ R

0

4πr2ρdr . (5.17)

This looks identical to the classical expression, but appearances are decep-
tive. The proper way to compute the mass of the star seems to be to mul-
tiply the density with the proper 3-volume element of space,

√
g d3x ={

1 − 2m(r)/r
}−1/2

r2 sin θ drdθdϕ (see exercise 4.4), and to sum up. This
sum-of-all-mass-elements is called the bare mass Mb:

Mb =
∫

V

ρ
√

g d3x =
∫ R

0

4πr2ρ dr√
1 − 2m(r)/r
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>

∫ R

0

4πr2ρdr = M . (5.18)

Mb exceeds M because the 3-volume of a sphere with radius R is larger than
(4π/3)R3. But Mb cannot be measured. Whatever experiment we conduct
outside the star to determine its mass (for example the period of an orbit-
ing satellite), the result will always be M , because the metric there is the
Schwarzschild metric of a central mass M . One may also say that Mb is larger
than M due the binding energy of the star. A similar thing happens in the
case of the mass defect of atomic nuclei. If the star is cut into small pieces,
it takes an energy of (Mb − M) c2 to bring these to r = ∞, if their density
is not altered. Almost the same amount of energy is released when a neutron
star is formed.7 We may estimate Mb from the factor {· · ·}−1/2 in (5.18):

{
1 − 2m(r)

r

}−1/2

∼
{

1 − 2m(R)
R

}−1/2

=
(
1 − rs

R

)−1/2

∼ 1.2 , (5.19)

for rs = 3 km, R = 10 km. It would follow that (Mb − M) c2 ∼ 0.2Mc2 ∼
3×1053 erg for a star of M = 1M�. This colossal amount of energy is radiated
in the form of neutrinos, and only a fraction ∼ 10−2 ∼= 1051 erg in photons
in the optical range of the spectrum (the visible supernova). We conclude
that the birth of a neutron star in a gravitational collapse is accompanied by
wholesale annihilation of mass.

Exercise 5.3: Prove (5.8) from Tµν
:ν = 0.

Hint: Write out T 1ν
:ν = 0 using (2.51), (5.7), (4.10) and (4.14). T iν

:ν = 0
(i = 0, 2, 3) does not convey any extra information. Note that T 1ν

:ν is not
equal to T 11

:1, see exercise 2.12.

Exercise 5.4: Stellar evolution produces heavy elements up to iron, through
fusion reactions. How are the elements heavier than iron formed?

7 Actually it is less because the energy to compress the matter to ρ ∼ 1015 g cm−3

must still be subtracted, see Misner et al. (1971) p. 603 for details.
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5.4 A simple neutron star model

The structure equations can be solved if we assume that ρ is constant. The
fun of this simple and well known model is that it has some basic features in
common with more realistic models. We put:

ρ =

{
ρ0 0 ≤ r ≤ R ;

0 r > R .
(5.20)

From (5.11) we get immediately that:

M(r) =
4πρ0

3
r3 , (5.21)

while (5.10) tells us that

2m(r)
r

= ar2 with a =
8πGρ0

3c2
. (5.22)

Since 2m(R) = rs we have
rs/R = aR2 . (5.23)

Next we insert (5.22) into the TOV equation:

2ρ0c
2 dp

dr
= − ar

1 − ar2
(p + ρ0c

2)(3p + ρ0c
2) , (5.24)

from which p(r) can be solved (see exercise):

p(r) = ρ0c
2

√
1 − ar2 −

√
1 − aR2

3
√

1 − aR2 −
√

1 − ar2
. (5.25)

The central pressure in the star is

p(0) = ρ0c
2 1 − x

3x − 1
; x =

√
1 − aR2 . (5.26)

Apparently p(0) ↑ ∞ for x ↓ 1
3 , i.e. when rs/R = aR2 ↑ 8

9 . In other words,
when R ↓ 9

8rs a star with ρ = constant collapses to become a black hole,
because no material can support an infinite pressure. But constant-density
stars, of course, do not exist. However, it has been proven that this result
is generally valid, even when ρ is not constant: A spherically symmetric star
with radius R < 9

8 rs collapses to become a black hole.8

We may reformulate this as follows. We have M = (4πρ0/3)R3 ≥ (4πρ0/3)·
(9rs/8)3 = (4πρ0/3) · ( 9

8 · 2GM/c2)3. On solving for M we get:

8 E.g. Wald (1984) p. 129; the only conditions are ρ ≥ 0 and dρ/dr ≤ 0, but there
is no requirement on the pressure p.
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M ≤ Mc =
(

4c2

9G

)3/2( 3
4πρ0

)1/2

=
3.60M�√
ρ0/1015

. (5.27)

Let us step back to discuss these results. Relation (5.27), on its own, says
that if an object of density ∼ ρ0 is to have a radius larger than rs ( 9

8 rs to
be precise), its mass cannot exceed Mc. But ρ0 may have any value, and the
results of this section cover normal stars and neutron stars. We have a look at
normal stars first. In the classical limit, aR2 � 1 and x 	 1 − aR2/2, (5.26)
says that p(0) 	 ρ0c

2aR2/4 ∼ 2Gρ2
0R

2. Equating that to the pressure p =
ρ0κT/mb of a classical gas we find for the temperature κT ∼ 2Gmbρ0R

2 ∼
GMmb/2R. In other words, κT ∼ potential energy per baryon at the surface.
Inserting the solar mass M and radius R, the result is that T ∼ 107 K – about
the correct central temperature of the Sun.

Objects more compact than ordinary stars have a higher central pressure,
and if the radius becomes of the order of rs, (5.25) says that the pressure must
be of order ρ0c

2, which for a classical gas implies that κT ∼> mbc2 or T ∼> 1013 K.
But such high temperatures are unattainable due to very efficient cooling
mechanisms (for example neutrino losses – a volume effect). Neutron stars
‘solve’ that by resorting to densities so high that degeneracy sets in, and the
Pauli principle forces baryons to relativistic speeds regardless of temperature.
The energy density and therefore the pressure may now attain values of ρ0c

2

and much more. Quantum statistics says that the pressure is ∼ ρ0c
2 if there

is one baryon per cubic Compton wavelength λc, i.e. ρ0 ∼ mb(�/mbc)−3 ∼
1017 g cm−3. And this agrees in turn with (5.3) and (5.4) if we take ρ0 ∼
Mc/R3

c .

Exercise 5.5: Prove (5.25).

Hint: Change to y = p/ρ0c
2 in (5.24) → dy

/{
(y+1)(3y+1)

}
= − 1

2ar dr/(1−
ar2). Use

{
(y + 1)(3y + 1)

}−1 = 1
2 (y + 1

3 )−1 − 1
2 (y + 1)−1. Integrate from r to

R.

Exercise 5.6: Prove for the ρ = constant model that for r ≤ R :

g00 =
1
4

(
3
√

1 − aR2 −
√

1 − ar2
)2

;

g11 = − (1 − ar2)−1 .

(5.28)

The metric of a constant-density star is now given by:
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ds2 =
1
4

(
3
√

1 − aR2 −
√

1 − ar2
)2

c2dt2

− dr2

1 − ar2
− r2(dθ2 + sin2 θ dϕ2) , (5.29)

for 0 ≤ r ≤ R. Verify that this metric has no singularities.

Hint: g00 = e2ν(r); from (5.8): dν = −(p + ρ0c
2)−1dp; integrate from r to R:

eν(r) = eν(R)
/{

1 + p(r)/ρ0c
2
}
. Now use (5.25). Observe that eν(R) equals eν

from (4.29) → eν(R) = (1 − aR2)1/2.

Exercise 5.7: Show that for a star with ρ = constant

rs

R
=

8
9

(
M

Mc

)2/3

. (5.30)

Hint: rs/R from (5.23), and R from (5.21); eliminate ρ0 with (5.27).

Exercise 5.8: Consider a neutron star with constant ρ = 1015 g cm−3 and
M = 1.8M�. Compute (a) the Schwarzschild radius; (b) the bare mass Mb,
and (c) the rate of a clock at the centre of the star with respect to the clock
rate at r = ∞.

Hint: (a): (5.27) → M = 1
2Mc; (5.30): rs/R = 0.560 and rs = 1.8 × 2.95 km

= 5.3 km, so that R = 9.5 km. Not bad for such a crude model.
(b): (5.18) → Mb = (4πρ0/a

√
a )

∫ R
√

a

0
x2(1− x2)−1/2dx (look up in a table).

Result: Mb = 3
2M

{
arcsin y − y

√
1 − y2

}
/y3 with y = R

√
a =

√
rs/R →

Mb = 1.25M .
(c): From (3.2) and (5.28): dτ(0)/dt = 1

2

(
3
√

1 − aR2 − 1
)

= dτ(0)/dτ(∞)
because dτ(∞)/dt = 1 (why?) → dτ(0)/dτ(∞) = 0.495. A redshift while
there is no gravity at the centre of the star - isn’t that strange?

5.5 Realistic neutron star models

The structure equations may be integrated when the relativistic equation of
state p(ρ) is known. If the ‘enclosed mass’ Mi, the pressure pi and the den-
sity ρi are known at radial position ri, then we obtain Mi+1 and pi+1 at
the next level ri+1 = ri + ∆ri from eqs. (5.11) and (5.16). The equation of
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outer crust: lattice of n-rich heavy
nuclei; degenerate relativistic e-

inner crust: as above, plus
degenerate non-relativistic n

core: no ion lattice; degenerate
relativistic n;  ~ 1% admixture of
p and e- ;  phase transitions?

r ~ 106 g cm-3

rd ~ 4 x1011 g cm-3

rn ~ 3 x1014 g cm-3

r0 ~ 1015 g cm-3

Fig. 5.7. Schematic structure of a neutron star (n = neutrons, p = protons, e− =
electrons). The figure is not to scale and the crust is in reality much thinner. The
pressure in the crust is determined by the degenerate electrons, in the core by the
degenerate neutrons.

state gives the corresponding density ρi+1. Starting values are enclosed mass
M0 = 0 and the central density ρ0. During the integration r > 2m(r) must
hold everywhere. The stellar surface r = R is defined by p(R) = 0. The g11

element of the metric tensor (4.3) and the function λ(r) are fixed by relation
(5.10). The element g00 = e2ν(r) of the metric tensor (4.3) can be obtained
by integrating (5.8) or (5.15). The value of ν is known at the outer boundary
where the internal metric fits smoothly to the exterior Schwarzschild metric,
see exercise 5.6. One may either integrate inwards, or start at r = 0 assuming
an arbitrary value for ν(0) as the structure equations do not depend on ν. In
the end a constant is added to all {νi} to reproduce the known value of ν(R).

The real problem is not the integration of the structure equations, but the
equation of state (EOS). The properties of ultra-dense, cold matter in ther-
modynamic equilibrium may, broadly speaking, be divided in three regimes
that also correspond to three different regions of the neutron star, see Fig. 5.7.
As we already saw in § 5.1, the high Fermi energy of the electrons induces
inverse β-decay (e− +p → n+νe).9 As a result the nuclei have more neutrons
than normal. Above ρd 	 4 × 1011 g cm−3 the nuclei become oversaturated
with neutrons, and free neutrons appear. This phenomenon is called neutron
drip. For densities larger than ρn the ion lattice disintegrates, and, as a re-
sult, the structure of the core is deceptively simple: a degenerate relativistic
neutron gas with a small admixture of protons and electrons. But there are
major uncertainties as to the occurrence of phase transitions in the inner core.
These include a hypothetical crystallisation of the neutrons, the formation of

9 A neutron star is not a closed system to neutrinos, so complete equilibrium may
not be achieved.
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Table 5.1. Maximum mass Mc and other parameters for three EOS. a

EOS Mc Rc ρ0
b surface

(M�) (km) (1015 g cm−3) redshift

soft (F) c 1.5 (1.7) d 7.9 5.1 0.49
medium (FPS) 1.8 (2.1) 9.3 3.4 0.53
stiff (L) 2.7 (3.3) 13.7 1.5 0.55

a Data from Cook, G.B., et al., Ap. J. 424 (1994) 823. All numbers are for
nonrotating models.
b central density.
c The letter code refers to the EOS in Table 2 of Cook et al. (1994).
d In parenthesis the maximum mass for maximally rotating models.

a pion condensate or a transition to a quark-gluon plasma. The bottom line
is that the EOS is reasonably well known in the crust (ρ < ρn), but not at all
in the core (ρ > ρn), the region that largely fixes mass and radius of the star.

Rhoades and Ruffini10 computed an upper limit to Mc by assuming that
below a certain reference density ρref of the order of ρn the so-called Harrison-
Wheeler EOS applies, while for ρ > ρref the EOS is required to obey causality
(p > 0 and dp/dρ ≤ c2)11 but otherwise unspecified. They found that

Mc/M� ≤ 4.0 · (ρn/ρref)1/2 . (5.31)

This upper limit is obtained for a maximally stiff EOS (dp/dρ = c2 for
ρ > ρref). At the time, the importance of this result was the existence of a
mass limit of about 4M�, independent of the details of the EOS. Since then,
more realistic calculations have considerably brought down the value of Mc,
see Table 5.1. An EOS is said to be soft / hard if it features a relatively low
/ high pressure at typical core densities. As the EOS shifts from soft to stiff,
we see in Table 5.1 that Mc and the radius Rc both increase. Rotation adds
15 − 20% to Mc at most. Not in the table is the fact that the radius of the
star increases as M decreases below Mc.

Constraining the EOS

Observations are on the verge of putting constraints on the EOS. Neutron
star masses may be determined from orbital dynamics if the neutron star
is a member of a binary system. In some X-ray binaries the so-called mass
10 Rhoades, C.E. and Ruffini, R., Phys. Rev. Lett. 32 (1974) 324.
11 dp/dρ equals the square of the signal speed of the medium.
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function of the optical companion and of the X-ray emitting object could be
determined. Six neutron star masses could thus be determined (Shapiro and
Teukolski (1983), § 9.4). Precise timing of pulsars in binary systems has led to
the determination of some 20 neutron star masses.12 The masses range from
1 to 1.5M�, with a strong concentration near 1.35M�.

Neutron star radii may be estimated from the thermal emission of X-ray
burst sources, for example. The idea is that the spectrum yields the temper-
ature, and the radius follows from the observed flux density if we know or
can somehow estimate the distance of the neutron star.13 But due to many
uncertainties precise radius measurements do not yet exist. The distances to
some nearby neutron stars are known from a measurement of their paral-
lax. Good determination of the radii of these neutron stars will be possible
once the interpretation of their spectra is unambiguous. While an independent
measurement of a neutron star’s mass and radius seems asking for too much,
a measurement of M/R is not. The XMM-Newton observatory has recently
found indications for a redshift of z = 0.35 in the X-ray burst spectra of a
neutron star.14 Such a measurement would determine M/R, which in turn
constrains the EOS, see exercise.

Lastly, we mention quasi-periodic oscillations as a possibility to constrain
the EOS. Some low-mass X-ray binaries show quasi-periodic brightness oscil-
lations (QPOs in the jargon of the X-ray community). There are often two
well-defined frequencies in the range of 300 to 1200 Hz. These frequencies
are so high that the oscillations are likely to be a byproduct of the accretion
process very close to the neutron star. QPOs are therefore telling us some-
thing about the inner regions of the accretion disc, but there is no concensus
about meaning of the message. One possibility is accretion onto a neutron
star with a spin frequency of a few 100 Hz, and a moderately strong magnetic
field (107 − 1010 G), so that the accretion disc penetrates into the magne-
tosphere. The faster periodicity may result from clumpiness of matter due to
instabilities near the so-called sonic point of the disc, where the radial accre-
tion flow becomes supersonic. The QPO frequency would be the Keplerian
frequency in the neighbourhood of the sonic point, and the lower frequency a
beat phenomenon of the Keplerian frequency close to the sonic point and the
spin frequency of the star. There many uncertainties and ramifications, but
if these problems can be overcome QPOs may help to put contraints on the
EOS.15

12 Thorsett, S.E. et al., Ap. J. 405 (1993) L29; Thorsett, S.E. and Chakrabarty, D.,
Ap. J. 512 (1999) 288.

13 Van Paradijs, J. and Lewin, W.H.G., Class. Quantum Grav. 10 (1993) S117.
14 Cottam, J. et al., Nature 420 (2002) 51.
15 See e.g. Miller, M.C. et al., Ap. J. 508 (1998) 791.
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Exercise 5.9: Show that the gravitational redshift z of a non-rotating spher-
ical object is

1 + z = g00(emission site)−1/2 . (5.32)

Hint: 1 + z = λ0/λ = ν/ν0 (λ, λ0 = emitted, observed wavelength); follow
reasoning of (3.20) and g00(∞) = 1.

Exercise 5.10: Show that the gravitational redshift of a non-rotating object
cannot exceed z = 2, and that the measurement of z = 0.35 implies that
M/R = 0.15M�/km. Suppose we know on astrophysical grounds that the
star has a mass of 1.5M�. Which EOS in Table 5.1 are tenable?

Hint: g00(emission site) has a minimum because R > 9
8rs (§ 5.4); M must be

below Mc (because if M ↓ then R ↑ and z ↓); R = 10 km → incompatible
with EOS L and F, possibly compatible with FPS.
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Black Holes

In the previous chapter we saw that a star may collapse completely. No force
can prevent this, not even one we haven’t discovered yet: any additional pres-
sure would only generate more gravity than supporting force, and will accel-
erate the collapse. A complete collapse produces a black hole. Such a black
hole would have a stellar-size mass, due to its formation history, but from a
theoretical point of view there are no restrictions, and black holes of any mass
may exist. Black holes were predicted by John Michell in 1784. He noticed
that the escape velocity (2GM/R)1/2 of a spherical mass may be greater than
c if M/R is sufficiently large. He argued that such objects must be invisible
because light cannot escape. In 1939 Oppenheimer and Snyder analysed the
collapse and discovered that the collapsing matter cuts off all communication
with the outside world. Gravitational collapse and black holes began to be
seriously studied only after 1960. In 1963 Kerr found an axisymmetric solu-
tion of the vacuum equations, which was later realised to be the metric of a
rotating black hole. In 1967 Wheeler coined the term ‘black hole’, and in 1975
Hawking discovered that a black hole emits black body radiation. Black holes
may be thought of as lumps of pure gravity. They belong to the more ad-
vanced topics in GR, and we shall consider only a few elementary properties.

6.1 Introduction

Operationally, a black hole may be defined as an object that is smaller than
its Schwarzschild radius. To an observer at r = ∞ a black hole appears as a
hole in spacetime, that behaves like a black body with mass M and radius
rs = 2GM/c2, and strong lensing effects near the edge. A black hole is entirely
specified by 3 parameters: its mass M , angular momentum L, and charge Q
(theoretically, there is a fourth parameter: the magnetic monopole charge). All
other information about the parent body is lost. A black hole may influence the
outside world only through these parameters. This property led Wheeler to his
famous aphorism ‘black holes have no hair’. Magnetic field lines, incidentally,
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Table 6.1. Massive dark objects in galactic nuclei a

system type Mass and radius Reference
(106 M�) (pc)

Milky S b 3.6 ± 0.3 0.005 Eisenhauer et al., Ap. J. 628 (2005) 246.
way

M31 S 170 ± 60 0.11 Bender et al., Ap. J. 631 (2005) 280.
M106 S 39 ± 3 0.13 Miyoshi et al., Nature 373 (1995) 127.
M32 E 3.4 ± 1.6 0.3 Van der Marel et al., Nature 385 (1997) 610.
M87 E (2.4 ± 0.7) · 103 18 Ford et al., Ap. J. 435 (1994) L27.

a For reviews see Ferrarese, L. and Ford, H., Space Sci. Rev. 116 (2005) 523;
Kormendy, J., in Coevolution of Black Holes and Galaxies, L.C. Ko (ed.), Cam-
bridge U.P. (2004), p 1.
b S = spiral, E = elliptical galaxy.

do not count as hair: a charged rotating hole has a magnetic dipole moment
QL/Mc and an exterior magnetic field. The field is weak as the charge Q
is expected to be very small. The Schwarzschild metric is the simplest black
hole solution of the vacuum equations (mass M , nonrotating and uncharged).
There are more general black hole solutions, for example the axisymmetric
Kerr solution for a rotating uncharged hole with parameters M and L that we
shall briefly consider in § 6.5. For the most general black hole characterised
by M, L and Q see Wald (1984). Although GR allows black holes of any
mass to exist, stellar and galactic evolutionary processes lead naturally to the
formation of stellar-mass black holes and supermassive holes (106 − 109 M�).

The mean density of a hole is ρ = M/(4πrs
3/3) ∼ 2 × 1016(M/M�)−2

g cm−3. For a supermassive hole of ∼ 108 M� this is only ∼ 1 (density of
water). Black holes are therefore not necessarily associated with extremely
dense matter. Having said that, the mean density of a hole of 1010 kg (rs ∼
10−15 cm!) is ρ ∼ 7 × 1056 g cm−3. This is so high that these small holes are
believed to form only during the Big Bang – if at all. But evidence for the
existence of such primordial black holes is lacking.

6.2 Observations

Black holes can be observed only indirectly, when they interact with their
environment. It is generally believed that the enormous luminosity L∼> 1047

erg s−1 of quasars and active galactic nuclei (AGNs) is caused by accretion of
1− 100M� per year onto a massive black hole (106 − 109M�), for the follow-
ing reasons. The emission is often variable on time scales tv of days to hours,
in some cases even 103s. Causality puts an upper limit to the source size of
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Fig. 6.1. Astrometric observations using adaptive optics techniques have shown
that S2, a massive main-sequence star, is in a highly elliptic Keplerian orbit around
the compact radio source Sgr A∗ at the galactic centre (large cross), with a period
of about 15 yr. The combination of radial velocities (from the spectrum of S2) and
proper motion data allows a precise determination of the orbital parameters and
the distance of Sgr A∗. The data strongly indicate that the gravitational potential is
that of a point mass from 0.8 light days to 2 ly. The only compelling interpretation is
a supermassive black hole. Horizontal image size: 15′′. See Schödel, R. et al., Nature
419 (2002) 964; Eisenhauer, F. et al., Ap. J. 597 (2003) L121. The most recent mass
determination of the hole is 3.6 ± 0.3 M�, and the distance to the galactic centre
is 7.6 ± 0.3 kpc (Eisenhauer, F. et al., Ap. J. 628 (2005) 246). Credit: R. Genzel
(private communication).

ctv, which must therefore be small. An object radiating L = 1047 erg s−1 will,
by the Eddington limit argument,1 have a mass of ∼> 109M�. Another way to
estimate the mass of the central object is to say that if it converts mass into
energy with an efficiency η to sustain its luminosity L for a time ∆t, then
it must have acquired a mass M = L∆t/ηc2. Accretion onto a black hole is
the most efficient mechanism known for releasing gravitational energy. For a

1 The radiation of the source exerts a radiation pressure on the infalling electrons
through Thomson scattering which by charge neutrality is mediated to all ac-
creting matter. The limiting (Eddington) luminosity LEdd is attained when the
radiation pressure equals the acceleration of gravity. For steady spherical accre-
tion L < LEdd � 1.3 × 1038(M/M�) erg s−1, see Frank et al. (1992).
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non-rotating hole η = 0.057 (see exercise) and for a maximally rotating hole
η may be as large as 0.42 (while fusion of hydrogen to helium liberates only
0.007 of the rest mass energy). A reasonable estimate for accretion-powered
sources is η ∼ 0.1. Many AGNs (such as double radio lobe sources) must have
existed at least 107 yr. Hence, M ∼ 108M�. One way or another, we have
a very large mass in a small volume, and such mass distributions, whatever
their nature, are believed to develop quickly into a black hole.

Observations of stellar dynamics reveal that many nearby galaxies har-
bour ‘heavy dark objects’ within a very small radius around their centres
(Table 6.1). Among these, the case for a massive black hole in the galactic
centre at the location of the compact radio source Sgr A*, and in the nuclei
of M31 and M106 (= NGC 4258) is very strong. Sgr A* is arguably the most
convincing black hole candidate we have, see Fig. 6.1. Near-infrared and X-ray
observations of Sgr A* reveal variability on a timescale of 10 minutes, indi-
cating that the object cannot be larger than ∼ 20 Schwarzschild radii (of a
3.6× 106M� hole). As VLBI techniques improve, they will eventually permit
to resolve the Schwarzschild radius of the hole (∼ 10µ arcsec). Perhaps we
may one day observe the shadow cast by the event horizon of ‘our’ black hole
in Sgr A*.2

The arguments for the existence of black holes are admittedly indirect, in
the sense that they do not address the immediate vicinity of the hole. But
that situation is beginning to change rapidly. For example, X-ray spectroscopy
of the 6.4 keV iron line of MCG-6-30-15 (a Seyfert 1 galaxy) indicates that
the emission comes from a hot disc around a spinning black hole. The inner
radius of the emission appears to lie at about one Schwarzschild radius.3

Recently, a new class of X-ray sources has been discovered, the ultra-
luminous X-ray sources, in star forming regions of nearby galaxies. They may
point to the existence of intermediate-mass black holes of 102 − 104 M�.4

Moving down the mass scale to stellar-mass black holes, evolution calcula-
tions indicate that they should be numerous: a fraction ∼ 10−4 of the stellar
population. But only a few have been found, in bright X-ray binaries with
Lx ∼ 1037 − 1038 erg s−1. This points towards accretion onto a compact ob-
ject of mass Mx ∼ 1M�. A lower limit for the mass of the X-ray source can
be inferred if the radial velocity profile of the companion star can be mea-
sured. If Mx ∼> 3M� it has to be a black hole because the mass exceeds the
maximum mass of a rotating white dwarf or neutron star (∼ 3M�). There

2 On Sgr A* see Schödel, R. et al., Nature 419 (2002) 694; Genzel, R. et al., Nature
425 (2003) 934; Melia, F. and Falcke, H., A.R.A.A. 39 (2001) 309.

3 Fabian, A.C., Mon. Not. R. Astron. Soc. 335 (2002) L1.
4 E.g. Miller, M.C. and Colbert, E.J.M., Intl. J. Mod. Phys. D 13 (2004) 1.
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are now 18 confirmed stellar mass black hole candidates.5 Their companion is
often a solar-type star, in three cases a massive O or B star.

6.3 Elementary properties

From the previous section it seems that the case for the existence of black
holes, while formally still open, is tightening rapidly. We move on to review
some of their properties. To this end we study the orbit of a test mass falling
radially into the hole. The test mass moves along a geodesic in the Schwarz-
schild metric, with h = 0 because ϕ̇ = 0. From (4.37) we see that

1
c2

(
dr

dτ

)2

= e2 − 1 +
rs

r
, (6.1)

or, for e = 1:
dr

dτ
= − c

(
rs

r

)1/2

. (6.2)

Apparently, the choice e = 1 means that the mass has zero velocity at r = ∞.
Equation (6.2) is of the type

√
r dr = const ·dτ and is readily integrated:

τ = − 2rs

3c

(
r

rs

)3/2

+ const. (6.3)

The singularity

It follows that the test mass traverses the distance between any finite value
r0 and r = 0 (where the collapsing matter has accumulated earlier) in a finite
proper time ∆τ , Fig. 6.2 (left). This remains so if we do a more complete
complete calculation with e �= 1 to allow for nonzero velocity in r = ∞.
We assumed that the vacuum metric is everywhere correct, but r = 0 is a
singularity where the density becomes formally infinite. The test mass will be
crushed by infinitely large forces as it arrives there. But before that happens
quantummechanical effects take over, as classical GR loses its validity for
length scales near the Planck length Lp 	 1.6 × 10−33 cm.6 But nothing out
of the ordinary happens when an observer crosses r = rs. This is merely a co-
ordinate singularity, a consequence of the way the co-ordinates are defined
5 McClintock, J.E. and Remillard, R.A., in Compact Stellar X-ray Sources, W.H.G.

Lewin and M. van der Klis (eds.), Cambridge U.P. (to appear), also astro-
ph/0306213; see further Frank et al. (1992) § 6.7.

6 The Planck mass and length are defined as the mass and Schwarzschild radius
of a black hole whose Compton wavelength equals the Schwarzschild radius, see
§ 13.2.
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Fig. 6.2. The worldline of a test mass falling into a black hole. It reaches the origin
r = 0 in a finite amount of proper time τ . To an observer at r = ∞ (whose clock
runs synchonously with co-ordinate time t), the object turns dark and freezes to
immobility just ouside the horizon r = rs. To the right: the future light-cone as a
function of r, see text.

in the Schwarzschild metric (4.27). By choosing different co-ordinates the
singularity may be avoided (§ 6.4). Note that an extended observer will be
torn to pieces by the tidal forces long before r = rs is reached (see exercises).

The event horizon

A completely different picture emerges if we analyse the situation as seen by
an observer at r = ∞. He uses his own proper time to describe the fall, but
that is identical to the co-ordinate time t.7 With e = 1 and (4.32) we can
transform proper time into co-ordinate time: dr/dτ = (dr/dt) · (dt/dτ) =
(1 − rs/r)−1dr/dt. Insert this in (6.2):

dr

dt
= − c

(
1 − rs

r

)(
rs

r

)1/2

, (6.4)

or, with y ≡ r/rs:
c

rs
dt = − y

√
y

y − 1
dy , (6.5)

which can be integrated to

ct

rs
= −

(
2
3y

√
y + 2

√
y + log

√
y − 1

√
y + 1

)
+ const. (6.6)

When r � rs only the first term contributes. For r 	 rs we put r = rs + δ or
y = 1 + δ/rs. In this way we obtain the following approximation:

7 This follows from (3.2): dτ(∞)/dt =
√

g00(∞) = 1.
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ct

rs
	

⎧⎪⎪⎨
⎪⎪⎩

− 2
3

(
r

rs

)3/2

+ const. (r � rs) ;

− log δ + const. (r = rs + δ) .

(6.7)

For large r we thus recover (6.3), but not for r 	 rs, as t ↑ ∞ for δ ↓ 0. By
inverting (6.7) we see that δ = const · exp(−ct/rs), or

r = rs + const · exp(−t/tc) ;

tc =
rs

c
=

2GM

c3
	 10−5 M

M�
sec .

⎫⎪⎪⎬
⎪⎪⎭ (6.8)

According to an observer in r = ∞ the test mass slows down and hovers
just outside r = rs, never actually reaching r = rs, Fig. 6.2 (middle panel).
The time scale tc for this to happen is very small, about 10µs for M = 1M�.
Light emitted by the test mass will shift progressively to the red (see exercise).
Measured in proper time, the number of photons emitted before crossing r =
rs is finite, and that number of photons also arrives at r = ∞, but spread
out over time to t = +∞. The object will therefore turn dark and vanish
from sight. As we shall see, no signal from the interior region r < rs will
ever reach the exterior r > rs. For that reason r = rs is called the horizon.
There exist different kinds of horizon in GR, so we need to be more precise.
The Schwarzschild metric has an event horizon: signals emitted by events
inside the event horizon r = rs will never be visible to external observers –
however long they wait. The other main type of horizon is the particle horizon
in cosmology. The particle horizon is the distance of particles beyond which
an observer cannot see at this moment in time (but at a later moment he
can), see § 11.2. In the professional jargon the term horizon is often employed
without any type indication.

The future light-cone

Fig. 6.2 (middle panel) shows the worldline of the test mass in Schwarzschild
co-ordinates r and t also inside the horizon. From (4.32): dt/dτ = e/

(
1 −

rs/r
)

we see that dt < 0 for dτ > 0 in r < rs: t appears to run backwards.
No deep significance should be attached to this – it merely means that the
Schwarzschild co-ordinates (event labels) t and r are awkward to use when
r ≤ rs. The right panel of Fig. 6.2 displays the future light-cone as a function
of r. We may find that by putting ds2 = dθ = dϕ = 0 in (4.27):

cdt

dr
= ±

∣∣∣1 − rs

r

∣∣∣−1

. (6.9)

Relation (6.9) divides the r, t plane in 4 sections N, S, E, W . It is intuitively
clear that N is the future light-cone in the exterior region r > rs. The light-
cone becomes progressively narrower close to r = rs. The co-ordinate velocity
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M + dM  

 dM'

M

M  dM

Fig. 6.3. Growth of a nonrotating black hole as seen by an external observer. Top
left: a spherically symmetric shell collapses onto the hole. Bottom left: asymmetric
collapse with emission of gravitational radiation. Right: the final product may be
the same in both cases: a black hole of mass M + δM (δM ′ < δM on account of the
energy lost by radiation).

dr/dt of a photon and of a particle becomes zero near the horizon, but the
locally measured velocity does not, see exercise. But inside the hole the future
light-cone is W (exercise). Even if a particle in r < rs emits a photon radially
outwards (as seen in its own rest-frame), then drphoton < 0, as the light-cone,
by definition, contains all future worldlines. The exercise uses that dr < 0
somewhere, but we may take dr > 0 in r < rs as initial condition. Such
particles/photons must come from r = 0 and they will fly through the horizon
into the outside world (in their own perception – it takes until after t =
∞ before an observer in r = ∞ sees them). These are the time-reversed
orbits, which do exist as a mathematical possibility, for example according to
eq. (6.1). They are referred to as ‘non-causal’ because they depend on things
happening in r = 0, about which we cannot say anything.

Growth of a black hole

How can a black hole ever grow if an observer at r = ∞ sees falling test
masses ‘freeze’ on the horizon? The crux is that this is true for test masses,
which do not affect the metric, but not for finite masses. Consider a spheri-
cally symmetric shell of matter falling into a black hole of mass M , Fig. 6.3.
Because of the spherical symmetry an external observer finds himself in a
Schwarzschild metric with mass M + δM – provided the shell is sufficiently
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far from the hole so that the gravitational interaction between hole and shell
is small. Birkhoff’s theorem, § 4.2, says that the metric is stationary. This
means that regardless of how the shell collapses, a black hole of mass M +δM
must form. The details of the collapse are quite complicated,8 but Birkhoff’s
theorem allows us to infer the final result. It has further been proven that the
surface A = 4πr2

s of the horizon cannot decrease, dA ≥ 0, regardless of the
(a)symmetry of the collapse, and that a near spherically symmetric collapse
produces a black hole with the Kerr metric, see Schutz (1985) § 11.3 for more
information.

Exercise 6.1: Consider the following derivation: dr/dτ = (dr/dt)(dt/dτ) =
(dr/dt) g

−1/2
00 , so that

dr

dt
=

(
1 − rs

r

)1/2 dr

dτ
= − c

(
1 − rs

r

)1/2(
rs

r

)1/2

,

which is different from (6.4). Which of the two is wrong and why?

Exercise 6.2: Throw a stone radially into a 1M� black hole from r = ∞ at
30 km s−1. How much proper time does the stone need to travel the interval
[10 rs, 0]? Does the initial speed matter? How much proper time does it take
a photon to traverse that distance?

Hint: From (6.1) and the initial condition: e2 − 1 = 10−8. Hence put e = 1!
∆τ 	 210µs. The photon is a catch.

Exercise 6.3: What speed does an observer at rest in r = 1.1 rs measure for
the stone and the photon as they rush by into the hole?

Hint: The locally measured speed v ≡ d(locally measured distance)/d(locally
measured time) =

√−grr dr/d(τ observer) = (
√−grr dr)/(

√
g00 dt) = (1 −

rs/r)−1(dr/dt), and dr/dt is known. Stone: (6.4) → v = −c
√

rs/r 	 −0.95 c.
Photon: ds2 = 0 in (4.27) → dr/dt = −c(1 − rs/r) → v = −c.

Exercise 6.4: Consider stable circular orbits in the Schwarzschild metric.
Prove that the difference in binding energy of an orbit at r = ∞ and smallest
possible orbit r = r+ = 3rs is given by:

∆E =
(
1 − 2

3

√
2
)

m0c
2 	 5.7 × 10−2 m0c

2 . (6.10)

8 See e.g. Shapiro and Teukolski (1983) § 17.5.
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This implies that at most 5.7% of the rest mass energy is liberated as the
mass is processed through an accretion disc. For a maximally rotating black
hole this figure may rise to 42%.

Hint: ∆E = m0c
2∆e , see below (4.32); e(∞) − e(3rs) from (4.45).

Exercise 6.5: Convince yourself about the future light-cones in Fig. 6.2.

Hint: Consider a timelike worldline (not necessarily a geodesic). From (4.27)
and ds2 > 0 → |cdt/dr| > |1 − rs/r|−1 for r > rs (and < for r < rs).
Together with dt > 0 (future light-cone) this leaves only N in the exterior
region. Note that dr cannot be zero inside the hole; a particle must move
there, whatever forces are applied → dr either positive or negative. For the
subclass of geodesics this follows also from (6.1). On passing r = rs we know
that dr < 0 → dr < 0 everywhere → W remains (see text for dr > 0).

Exercise 6.6: The difference in gravitational acceleration over a length � at
a distance r from a black hole with mass M is

δg ∼ M

Ma

R2
a �

r3
ga . (6.11)

Ma, ga = mass of Earth, acceleration at the Earth’s surface. Use a classical
estimate. How large is this tidal acceleration δg for � = 1.8 m, M = 1M�,
r = 1000 km?

Hint: δg/ga 	 24.

Exercise 6.7: A laser with proper frequency ν0 falls into a black hole on a
radial geodesic r0(t0) with e = 1, see Fig. 6.4, emitting photons to r = ∞,
also radially. Prove that the frequency ν observed at r = ∞ equals

ν/ν0 = 1 −
√

rs/r0 ∝ exp(−t/2tc) . (6.12)

Hint: Tricky, because we must allow for the extra redshift due to the photons
escaping from an ever deepening gravitational well. If the laser would be at
rest in r0 we have ν0dτ = νdt0 → ν/ν0 = dτ/dt0 = (1 − rs/r0)1/2. But now
ν0dτ = νdt1:

ν

ν0
=

dτ

dt1
=

dτ

dt0

dt0
dt1

=
(

1 − rs

r0

)
dt0
dt1

, (6.13)

see Fig. 6.4; dτ/dt0 from (4.32) with e = 1 and not from (3.2). The relation
between t0 and t1 follows from the outgoing null geodesics: dr/dt = c(1−rs/r)
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Fig. 6.4. This figure covers several situations, all involving masses falling into a black
hole along a radial material geodesic r0(t0): (1) a falling laser, emitting photons to
r = ∞; (2) a falling detector observing photons arriving from r = ∞; (3) a falling
mirror reflecting photons back to r = ∞.

((4.27) with ds = dθ = dϕ = 0) → all radial null geodesics are congruent and
can be mapped onto each other by a vertical translation:

dt1 = dt0 + ∆t0 = dt0 − dr0 ·
(

dr

dt

)−1

null geodesic in r0,t0

. (6.14)

dr0 is negative and follows from (6.4). Result:

dt0
dt1

=
(
1 +

√
rs/r0

)−1

, and (6.15)

dr0

dt1
=

dr0

dt0

dt0
dt1

= − c
(
1 −

√
rs/r0

)√
rs/r0 . (6.16)

This proves the middle part of (6.12). Now let r0 = rs + δ with δ small, then
1−

√
rs/r0 	 δ/2rs. From (6.16): dδ/dt1 	 (−c/2rs)δ → δ ∝ exp(−t1/2tc).

Exercise 6.8: As you fall into a black hole along geodesic r0(t0) with e = 1
you spend your last moments observing photons emitted by a laser at r = ∞
(proper frequency ν0), see Fig. 6.4. Show that the observed frequency ν is:
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Fig. 6.5. Computing the gravitational acceleration in the Schwarzschild metric, see
text and Fig. 4.2.

ν/ν0 =
(
1 +

√
rs/r0

)−1

∼ 1
2 as r0 ↓ rs . (6.17)

Hint: Variant of the previous problem, using incoming instead of outgoing null
geodesics, and now νdτ = ν0dt2. The photons get blueshifted as they fall, but
the redshift due to the observer’s motion with respect to the laser is apparently
stronger (for e = 1). You may also calculate the redshift ν/ν0 = dt2/dt1 of
light from r = ∞ reflected back to r = ∞ off a radially falling mirror. Observe
that redshifts do not simply add!

Exercise 6.9: Prove that the gravitational acceleration g at the surface of a
neutron star with mass M and radius R is equal to

g =
−1√

1 − rs/R

GM

R2
. (6.18)

Hint: More generally, the question is what acceleration a rocket must deliver
to keep a mass in P at rest in the Schwarzschild metric, see Fig. 6.5. Strategy:
put a test mass in a radial α-type orbit (§ 4.3). The test mass is dropped
in P at zero velocity and an observer at rest in Q measures the acceleration
of the mass as it flies by. There are three times in this problem: τ , τ∗ and
co-ordinate time t. The speed measured by an observer at rest in Q equals:

d�

dτ∗ =
√−grr dr

dτ∗

dt

dt

dτ
dτ

=
1
e

dr

dτ
, (6.19)

since dτ∗/dt =
√

g00 and dt/dτ from (4.33). Differentiate once more:

d2�

dτ∗2 =
1
e

d2r

dτ2

dτ

dτ∗ =
1
e

d2r

dτ2

dτ

dt

dt

dτ∗ , (6.20)

and dτ/dt and dt/dτ∗ are known. Use (6.1) to show (1) that e2 = 1 − rs/R



6.4 Kruskal-Szekeres co-ordinates 121

(P is apex of the orbit → dr = 0 there), and (2) by differentiation:
(2/c2) (dr/dτ) (d2r/dτ2) = −(rs/r2)(dr/dτ) → (d2r/dτ2) = −(c2rs/2r2).
Insert everything in (6.20) and let r → R.

6.4 Kruskal-Szekeres co-ordinates

Schwarzschild co-ordinates are useful when r � rs, but become inconvenient
near rs. The co-ordinate singularity at r = rs prevents one from stepping
smoothly over the horizon. In 1960 Kruskal and Szekeres found a system of
co-ordinates that does not suffer from this problem and is very expedient for
use in the neighbourhood of r = rs. The idea is to use a mesh of radial null
geodesics as the co-ordinate lines of a new co-ordinate system. Since these are
photon paths that actually cross the horizon we hope to eliminate in this way
some of the odd behaviour of Schwarzschild co-ordinates. According to (4.27)
radial null geodesics are given by (1− rs/r)c2dt2− (1− rs/r)−1dr2 = 0, which
integrates to:

x± ≡ ct ∓ {r + rs log(r/rs − 1)} = constant , (6.21)

and x+ = constant describes outgoing null geodesics, x− = constant the
incoming null geodesics. For simplicity we restrict ourselves momentarily to
r > rs. The θ and φ co-ordinates remain unchanged and play no role. The
next step is to introduce new co-ordinates u and v:

u + v = f(x−) ; u − v = g(x+) , (6.22)

for arbitrary (well-behaved) functions f and g. We have now defined a class of
co-ordinates in which u± v = constant represents outgoing and incoming null
geodesics. These null geodesics are therefore straight lines making an angle of
±45◦ with the u and v co-ordinate axes – just like in the Minkowski space of
SR. The final step is to choose appropriate functions f and g. Kruskal and
Szekeres took f(x) = 1/g(x) = exp(x/2rs), leading to

u =
(

r

rs
− 1

)1/2

exp(r/2rs) cosh
ct

2rs

v =
(

r

rs
− 1

)1/2

exp(r/2rs) sinh
ct

2rs

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

for r > rs , (6.23)

u =
(

1 − r

rs

)1/2

exp(r/2rs) sinh
ct

2rs

v =
(

1 − r

rs

)1/2

exp(r/2rs) cosh
ct

2rs

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

for r < rs . (6.24)
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Fig. 6.6. Kruskal diagrams (1). Schwarzschild co-ordinates r and t as a function of
the Kruskal-Szekeres co-ordinates u and v. The solid toothed line is the singularity
r = 0.

The angles θ and ϕ remain unchanged. The inverse transformation is (exer-
cise): (

r

rs
− 1

)
exp(r/rs) = u2 − v2 ; (6.25)

ct

rs
= log

∣∣∣∣u + v

u − v

∣∣∣∣ . (6.26)

The metric in these new co-ordinates is (see exercise):

ds2 =
4r3

s

r
exp(−r/rs) (dv2 − du2) − r2 dΩ2 ;

dΩ2 = dθ2 + sin2 θ dϕ2 .

⎫⎪⎪⎬
⎪⎪⎭ (6.27)

From (6.25) we conclude that r/rs is a function of u2 − v2.

Properties

Kruskal-Szekeres co-ordinates have a number of interesting properties. First
of all, note that the u, v co-ordinates are a mix of the spatial co-ordinate r
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Fig. 6.7. Kruskal diagrams (2). Worldlines of photons and a massive particle. The
light-cone has everywhere an opening angle of 45◦.

and co-ordinate time t. The co-ordinates u and v have no obvious physical
interpretation, and the reader is once more reminded of the fact that co-
ordinates are merely event labels. Important is that the metric (6.27) is no
longer singular at r = rs, but the singularity in r = 0 remains. It follows from
(6.27) that radial null geodesics (ds = dθ = dϕ = 0) are given by:

dv = ±du , (6.28)

so that they are indeed lines of ± 45◦ inclination in the u, v diagram (‘Kruskal
diagram’). From (6.25) we see that lines with r = constant are hyperbo-
lae, u2 − v2 = constant. And (6.26) says that the lines t = constant have
(u+v)/(u−v) = constant, i.e. v = const ·u, that is, they are lines through the
origin. The transformation is drawn in Fig. 6.6. Since coshx+sinhx = ex > 0,
we infer from (6.23) and (6.24) that u+v > 0: the Schwarzschild co-ordinates
r, t are mapped onto region I (‘our universe’ r > rs) + region II (the black hole
r < rs). According to (6.25) the singularity r = 0 is located at v = +

√
1 + u2.

Fig. 6.7 shows the worldline of a particle falling into the hole (emitting a
photon as an ultimate farewell message), and of an incoming photon. Clearly
neither particles nor photons have the possibility to return to the exterior
region I once they have entered II. All worldlines in II hit the singularity –
there is no escape. The regions III and IV exist because we may also define
(6.23) and (6.24) with an overall minus sign, the inverse transformation (6.25)
and (6.26) being invariant for (u, v) → (−u,−v). Regions III + IV have no
clear physical meaning – they contain the time-reversed orbits discussed be-
low (6.9), and region IV is accordingly referred to as a white hole For more
information see Misner et al. (1971) Ch. 31; Wald (1984) § 6.4.
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Fig. 6.8. Kruskal diagrams (3). Light reflected off a mirror on the surface of a
collapsing star will, after a certain moment, no longer return to r = ∞. The grey
part of the diagram has no physical meaning, see text.

Exercise 6.10: Prove the relations (6.25) – (6.27).

Hint: Use cosh2 − sinh2 = 1 and arctghx = 1
2 log{(1 + x)/(1− x)} for x2 < 1.

For (6.27) differentiate (6.25): (r/r2
s ) exp(r/rs)dr = 2(udu − vdv) → dr =

(2r2
s /r) exp(−r/rs)(udu − vdv); (6.26): cdt = 2rs(u2 − v2)−1(udv − vdu) =

(2r2
s /r)(1 − rs/r)−1 exp(−r/rs)(udv − vdu). Substitute in (4.27).

Exercise 6.11: We send a light signal towards a mirror lying on the surface of
a collapsing star, in an attempt to let a black hole reflect light. Show that the
mirror will always see the beam and reflect the light, even inside the horizon.
Nonetheless, light emitted after a certain time t0 will never reach the outside
world, whence the name ‘a hole in spacetime’.

Hint: See Fig. 6.8: 1 = worldline external observer; 2 = worldline stellar sur-
face; 3 = last possibility for reflected light to escape; 4 = corresponding null
geodesic; 5 = definition of t0.

Exercise 6.12: Let line 2 in Fig. 6.8 be the worldline of the collapsing stel-
lar surface. Show that the grey part of the Kruskal diagram has no physical
relevance.
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Hint: Grey part of I and II contains worldlines of the stellar matter, but by
shifting worldline 2 towards t = −∞ regions I and II remain as a whole.

6.5 Rotating black holes: the Kerr metric

The Kerr metric is a stationary axisymmetric solution of the vacuum equation
(3.39). We shall not actually solve the vacuum equations here, nor shall we
engage in any detailed calculations. In the case of axial symmetry the metric
tensor can no longer be made globally diagonal, and we intend to explain here
one of the more spectacular consequences of the non-diagonality of the metric:
the frame-dragging effect.

The metric tensor now depends on r and θ: gαβ = gαβ(r, θ). Furthermore
ds2 should be invariant under the transformation (dt, dϕ) → (−dt, −dϕ)
which implies gtθ = gtr = gϕθ = gϕr = 0. It would be incorrect to require
dt → −dt and dϕ → −dϕ separately, because that does not correspond to the
physical situation. Two cross terms remain: gtϕ and grθ. It turns out that grθ

can also be made zero, but for gtϕ this is not possible (without proof). The
metric has the following form:9

ds2 = gttdt2 + 2gtϕdtdϕ + gϕϕdϕ2 + grrdr2 + gθθdθ2 . (6.29)

The co-ordinates r and θ are no longer the same r and θ of the Schwarzschild
metric; they coincide only in the limit r → ∞. In that case (6.29) should be the
Lorentz metric, that is: gtt ∼ c2, grr ∼ −1, gθθ ∼ −r2, gϕϕ ∼ −r2 sin2 θ, and
furthermore gtϕ → 0. Besides the mass M , the metric (6.29) contains a second
parameter a, which occurs everywhere quadratically, except in gtϕ which is
linear in a. It turns out that a = L/Mc where L = total angular momentum
(for the Sun a = 0.092 rs 	 0.28 km). It follows that ds2 is invariant under
(a, dt) → (−a, −dt) which is as it should be if (6.29) is the metric of a
rotating black hole. Moreover (6.29) turns out to possess equatorial symmetry
(invariance for θ → π − θ).

Sofar we have always dealt with metric tensors that were diagonal, so that
gαα = 1/gαα (no summation), but here we encounter for the first time a
nontrivial 2×2 submatrix:(

gtt gtϕ

gtϕ gϕϕ

)
=

(
gtt gtϕ

gtϕ gϕϕ

)−1

9 See Shapiro and Teukolsky (1983) p. 357, Wald (1984) p. 312 ff and Schutz (1985)
p. 297.
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P1

P2

P1 < P2

Fig. 6.9. A satellite in orbit around a rotating black hole. Due to frame-dragging
the period P1 of a prograde orbit is smaller than the period P2 of a retrograde
orbit. To first approximation Ω1 − Ω2 is given by (6.32). A polar orbit will show
a precession of the orbital plane. In this way the LAGEOS geodetic satellites have
measured the frame-dragging due the rotation of the Earth to a precision of 10%
(Ciufolini, I. and Pavlis, E.C., Nature 431 (2004) 958).

=
1

gttgϕϕ − gtϕ
2

(
gϕϕ −gtϕ

−gtϕ gtt

)
, (6.30)

from which expressions for gtt, gϕϕ and gtϕ follow. We now consider the
constants of the motion. Because gαβ,t = gαβ,ϕ = 0 we know that ut and uϕ

are constant according to (2.40). Consider an ingoing particle with uϕ = 0.
We have:

uϕ ≡ gϕαuα = gϕϕuϕ + gϕtut = gtϕut ,

ut ≡ gtαuα = gttut + gtϕuϕ = gttut .

(6.31)

With the help of these relations we calculate the rotation Ω of the particle at
r, as measured by an observer at r = ∞:

Ω ≡ dϕ

dt
=

dϕ/ds

dt/ds
=

uϕ

ut
=

gtϕ

gtt
= − gtϕ

gϕϕ
	 2GL

c2r3
, (6.32)

for r � rs and θ = π/2. Use has been made of (6.31), and of (6.30) at the
last = sign; the last expression in (6.32) is given without proof. At r = ∞ we
have Ω = 0 and uϕ = 0. The choice of uϕ = 0 implies that the particle begins
its inward journey in the radial direction. But as it moves to finite r, the
gravity of the rotating hole forces the particle to rotate with the hole. This is
called frame-dragging. The hole ‘drags space along’ and this may be regarded
as a manifestation of Mach’s principle. One of the consequences of frame-
dragging is that the period of a satellite moving in a prograde orbit is smaller
than the period of a retrograde satellite, Fig. 6.9. In classical mechanics the
gravitational field of a sphere is independent of its rotation. Not so in GR!
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rs = 2GM / c2   ;    a = L / Mc

event horizon (grr = �) at

r = [rs + (rs2 - 4a2)½ ] / 2

static limit (gtt = 0) at

r = [rs + (rs2 - 4a2 cos2 q)½ ] / 2rs

Fig. 6.10. A rotating black hole, with its event horizon and static limit. Rotation
reduces the radius of the event horizon to a value between rs and rs/2. The space
between the static limit and the horizon is called the ergosphere. Objects inside
ergosphere may escape to r = ∞, but are forced to corotate with the hole. Black
holes cannot spin arbitrarily fast: the angular momentum L is restricted by a ≤ rs/2.
Holes with a = rs/2 are said to be maximally rotating.

Next we have a look at circular photon orbits, ds = dr = dθ = 0 in (6.29):

gttdt2 + 2gtϕdtdϕ + gϕϕdϕ2 = 0 . (6.33)

These orbits are not null geodesics, so one would need some optical contraption
like a set of mirrors to actually force the photon into a quasi-circular, polygon
orbit. Dividing by dt2 and solving for dϕ/dt produces

dϕ

dt
=

1
gϕϕ

(
− gtϕ ±

√
gtϕ

2 − gttgϕϕ

)
. (6.34)

Suppose that gtt = 0, then dϕ/dt = −2gtϕ/gϕϕ = 2Ω or dϕ/dt = 0. The
former solution is a photon rotating with the hole, the latter is a retrograde
photon. It is just able to beat the frame-dragging and is effectively at rest –
for an observer at r = ∞, not for a local observer. And massive particles are
forced to rotate when gtt = 0. The surface gtt = 0 is called the static limit
and is located outside the horizon, which is defined by grr = ∞. The space
between the horizon and the static limit is called the ergosphere. Rotation is
compulsory in the ergosphere. Whatever force the rocket of a test particle in
the ergosphere may exert, it cannot prevent the test particle from rotating
with the hole (for an observer at r = ∞). But a particle may still escape from
the ergosphere to r = ∞. In the Schwarzschild metric the surfaces gtt = 0 and
grr = ∞ coincide.

A discussion of the geodesics of the Kerr metric would be out of place
here. We only mention that the smallest stable circular orbit of a test particle,
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at 3rs in the Schwarzschild metric, moves inward (outward) for a prograde
(retrograde) orbit in the equatorial plane. For example, for a hole rotating at
80% of its maximum rate (a = 0.8 · 1

2rs = 0.4rs) we have rprogr = 1.45 rs and
rretrogr = 4.21 rs.

Exercise 6.13: We know that the exterior vacuum of a spherically symmetric
neutron star has the Schwarzschild metric. Does the exterior vacuum of a
rotating neutron star have the Kerr metric? Discuss the occurrence of frame-
dragging in case your answer is negative.

6.6 Hawking radiation

In 1975 Hawking discovered that black holes should emit thermal radiation –
in other words, that black holes are really black from a physical point of view.
The effect is due to the fact that vacuum fluctuations, spontaneous creation
and annihilation of particle anti-particle pairs occurring throughout space,
develop an asymmetry near an event horizon.10 The particle with negative
energy may fall into the hole, and the other must then escape towards r = ∞
as a real particle. The reverse process is forbidden because a particle with
negative energy cannot move as a real particle in the region outside the hole
(but inside the horizon it can). A complete calculation requires quantum field
theory near the horizon, see Wald (1984) p. 399 ff. Here we shall resort to an
intuitive approach due to Schutz (1985).

Consider a photon pair created close to the horizon, at r = rs + δ. We
analyse this process in the local rest-frame, i.e. a frame in radial free fall with
zero velocity in r = rs + δ. Special relativity applies there, and the virtual
particles have an energy ± ε. The observer is on a radial geodesic with h = 0
and from (4.37) we see that 0 = ṙ2 = e2 −

(
1− rs/(rs + δ)

)
, or, using δ � rs:

e2 	 δ/rs. The observer reaches the horizon in a proper time interval ∆τ ,
which we may find from (4.37). We transform to the variable x = r − rs:
10 The effect occurs whenever there is an event horizon. For example an observer in

Minkowski space subject to a constant acceleration a has an event horizon: signals
from events in the region beyond the asymptote to his worldline will never be able
to reach him. As a result he finds himself in a bath of thermal radiation with a
temperature T = �a/2πκc. This is called the Unruh effect. The effect has been
measured in electron storage rings, where it shows up in that it is impossible to
achieve 100% polarisation. This is now understood to be the result of the thermal
radiation that the accelerated electrons experience, see Bell, J.S. and Leinaas,
J.M., Nucl. Phys. B284 (1987) 488.
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dx

cdτ

)2

= e2 −
(

1 − rs

rs + x

)
	 δ − x

rs
, (6.35)

and ∆τ follows by integration:

c∆τ = −√
rs

∫ 0

δ

dx√
δ − x

= 2
√

rsδ . (6.36)

If ∆τ � �/ε the pair will annihilate long before reaching the horizon, and
when ∆τ � �/ε they annihilate long after that (i.e. inside the hole). However,
when ∆τ ∼ �/ε there is a chance that the photon with ε < 0 stumbles into
the hole while the other escapes towards r = ∞. This gives an approximate
relation between ε and δ:

ε ∼ �c

2
√

rsδ
. (6.37)

As the photon arrives in r = ∞, it is redshifted, and we compute its energy
E there from (3.20) and (3.2): E/ε = ν(∞)/ν(rs + δ) = dτ(rs + δ)/dτ(∞) =
dτ(rs + δ)/dt =

√
g00(rs + δ) :

E ∼ �c

2
√

rsδ

(
1 − rs

rs + δ

)1/2

	 �c

2rs
, (6.38)

which is independent of δ! Hawking’s analysis showed that the photons have
a Planck distribution corresponding to a temperature κT = �c/4πrs. A black
hole emits thermal radiation with a temperature

T =
�c3

8πκGM
	 6.2 × 10−8

(
M

M�

)−1

K . (6.39)

Physical consequences

Hawking radiation has two interesting consequences. The first is of a ther-
modynamic nature. Earlier on we said that the area of the horizon cannot
decrease (this was without any consideration of quantum effects). We may
cast this in a form reminiscent of a well-known thermodynamic relation. We
have dA = 8πrsdrs = 16πrs(G/c2)dM , or:

dMc2 =
c4

16πGrs
dA = T d

(
κc3

4�G
A

)
. (6.40)

This says that dE = TdS with E = Mc2 and the entropy S of the hole would
then be equal to

S =
κc3

4�G
A =

πκc3

�G
r2
s , (6.41)

apart from a constant. We may now argue that the hole’s entropy cannot
decrease because A cannot. However, A may decrease when quantum effects
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are taken into account, but in that case it is no longer correct to regard the
hole as an isolated system. The idea is that the total entropy of the hole and
the emitted radiation cannot decrease.

A second consequence is that a black hole will evaporate, because it loses
energy by emission of radiation. The mass of the hole must decrease according
to dMc2/dt = −4πr2

s σT 4, or with σ = π2κ4/60�
3c2:

dM

dt
= − a

M2
, with

a =
1

210 · 15π
· �c4

G2
= 4.0 × 1024 g3 s−1 .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6.42)

The evaporation rate is initially slow, but accelerates towards the end and
the last stages proceed explosively. All kinds of particles are emitted, not only
photons, but emission of particles with rest mass m0 becomes important only
when κT ∼>m0c

2. From the exercise below we see that of all primordial black
holes that may have formed during the Big Bang, those with M ∼< 2 × 1014 g
have evaporated by now – provided they did not accrete mass. According to
(6.39) these holes have an initial temperature of ∼> 6 × 1011 K.

Exploding microscopic black holes behave not unlike elementary particles,
with a characteristic emission spectrum of particles and photons. At present
there is no evidence for their existence. They may perhaps be found in cosmic
rays. An intriguing possibility is that microscopic black holes (or something
resembling it) might be created in future particle accelerators, and be detected
through their decay products.

Exercise 6.14: Show that the characteristic wavelength of the Hawking ra-
diation at r = ∞ is rs.

Exercise 6.15: Prove that the lifetime of a non-accreting black hole in vac-
uum is given by

t =
M3

3a
	 14 × 109

(
M

1.7 × 1014 g

)3

yr . (6.43)
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Gravitational waves

Periodic solutions of the vacuum field equations correspond to periodic vari-
ations in the geometry of spacetime. Because the equations are nonlinear in
gαβ analytic solutions can only be found in a few special cases. The physical
origin of the nonlinearity is that the energy and momentum density of the
gravitational field act in turn as a source of gravity. The situation is therefore
much more complicated than in the case of electromagnetic waves in vacuum,
which is a linear problem. However, we expect that the waves are very weak,
and then we may use the linearized theory of § 3.5. According to (3.49) we
have

�γµν =
(

1
c2

∂2

∂t2
− ∇2

)
γµν = 0 , (7.1)

with gµν = ηµν + γµν , showing that there must exist waves in the metric that
propagate at the speed of light. From (2.62) we infer that to first order in γ:

Rα
µνσ = 1

2ηαβ (γβσ,µν − γµσ,βν − γβν,µσ + γµν,βσ) . (7.2)

The waves show up in the Riemann tensor as well, so that we are really
dealing with fluctuations in the structure (the ‘geometry’) of spacetime, and
not with fluctuations in the definition of the co-ordinate system, for example.
These waves have recently been detected, albeit indirectly, in the binary pulsar
PSR 1913+16. Here we review their most important properties and detection
techniques.

7.1 Small amplitude waves

We use the linearized theory of § 3.5, where we wrote gαβ = ηαβ + γαβ and
hµν ≡ γµν − 1

2ηµνγσ
σ. For hµν the following equations were obtained:

�hµν = 0 ; hµν
,ν = 0 . (7.3)

It is recalled that the theory is accurate to first order in γ, that we may raise
and lower indices with ηµν and that ηµν commutes with �. We seek a plane
wave solution:
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hµν = aµν exp(ikαxα) with kµ = (Ω/c,k) . (7.4)

The constants aµν obey aµν = aνµ, so that there are in total 10 independent
numbers. Furthermore, kαxα = k0x

0 + kix
i = k0x0 − kixi = Ωt−k · r. Insert

that in (7.3):

0 = �hµν ≡ ηαβhµν
,αβ = aµνηαβ

{
exp(ikσxσ)

}
,αβ

. (7.5)

Now {exp(·)},αβ = −kαkβ exp(·) , or

0 = −aµνηαβkαkβ exp(ikσxσ) , (7.6)

and we conclude that 0 = ηαβkαkβ = ηαβkαkβ = (k0)2 − k2, or, with (7.4):

Ω2 = (kc)2 . (7.7)

A gravitational wave has the same dispersion relation as a plane electromag-
netic wave in vacuum. From hµν

,ν = 0 we find

aµνkν = 0 . (7.8)

These are 4 restrictions on the 10 constants aµν . But we haven’t chosen a
co-ordinate frame yet, and that yields four more restrictions. These take the
following simple form (see exercise):

aσ
σ = 0 and aµνtν = 0 , (7.9)

where tν is an arbitrary 4-vector obeying kµtµ �= 0. Relation (7.8) reveals
that kµaµν = aνµkµ = ηνσaσµkµ = 0, so that kµaµνtν is already zero. Hence
aµνtν = 0 gives only 3 independent restrictions. From aσ

σ = 0 it follows that
hσ

σ = 0, so that γ = h = 0 according to (3.51). The distinction between hµν

and γµν has vanished:
hµν = γµν . (7.10)

All gauge freedom has now been exhausted and from the 10 free constants
aµν only two are left. To proceed we take tν = (1, 0, 0, 0). Then from (7.9):
aµ0 = 0. In particular a00 = 0 and a0

0 = η0νaν0 = 0. It then follows from
aσ

σ = 0 that ai
i = 0 → aii = ηiνaν

i = −ai
i = 0. Taking k along the x3 axis,

we find with (7.7) that kµ = (Ω/c)(1, 0, 0, 1). Finally, we have from (7.8) that
0 = aµνkν = aµ0k

0 + aµ3k
3 = (Ω/c)aµ3. In summary, aµ0 = aµ3 = aii = 0, so

that aµν has the following format:

aµν =

⎛
⎜⎜⎝

0 0 0 0
0 axx axy 0
0 axy −axx 0
0 0 0 0

⎞
⎟⎟⎠ . (7.11)



7.1 Small amplitude waves 135

Only hxx = γxx and hxy = γxy are �= 0. This choice of aµν is called the trans-
verse traceless gauge, or TT-gauge. In the literature it is often denoted as aµν ,
hµν , γµν , .. to indicate that it refers to a special choice of the co-ordinates.
Only the spatial components of aµν perpendicular to the direction of propa-
gation are nonzero, that is, the wave is transverse. And ‘traceless’ obviously
refers to aσ

σ = 0. There are two independent wave modes, corresponding to
the constants axx and axy in (7.11).

For a weak gravitational wave propagating along the x3-axis (z-axis) in the
TT-gauge we may summarize our results as follows, using kαxα = Ω(t− z/c)
and λ = wavelength:

gµν = ηµν + γµν ; γµν = aµν exp{iΩ(t − z/c)} ,

with λ = 2π/k = 2πc/Ω ,
(7.12)

and aµν is given by (7.11). The explicit form of the metric is

ds2 = c2dt2 − (1 − γxx)dx2 − (1 + γxx)dy2 + 2γxydxdy − dz2 . (7.13)

Exercise 7.1: Prove that one may impose the restrictions (7.9).

Hint: In exercise 3.11 a transformation was used to obtain the linearized the-
ory. However, there was still some gauge freedom left. We make once more
a transformation xα → xα + ξα(x) for which then �ξα = 0 must hold.
From the hint in exercise 3.11 we see that γµν = γµν − ξµ,ν − ξν,µ , so that
γ = γρ

ρ = ηρα γαρ = ηρα(γαρ − ξα,ρ − ξρ,α) = γρ
ρ − 2ξρ

,ρ = γ − 2ξρ
,ρ. Hence

γ = γ − 2ξρ
,ρ. From (3.51): hµν = γµν − 1

2ηµνγ. Show that this leads to:

hµν = hµν − ξµ,ν − ξν,µ + ηµνξρ
,ρ . (7.14)

Now take ξµ = bµ exp(ikαxα) with kµ from (7.4). This choice obeys �ξµ = 0.
We must now show that there exist a bµ so that (7.9) holds. Write hµν =
aµν exp(ikαxα) and hµν = aµν exp(·), in accordance with (7.4), and substitute
in (7.14):

aµν = aµν − ibµkν − ikµbν + iηµνbρkρ , (7.15)

from which aµ
µ = aµ

µ− ibµkµ− ikµbµ +iηµ
µbρkρ → aµ

µ = aµ
µ +2ibµkµ (since

ηµ
µ = δµ

µ = 4). Require aµ
µ = 0 → ibµkµ = − 1

2aµ
µ. Substitute in (7.15):

aµν = aµν − ibµkν − ikµbν − 1
2ηµνaρ

ρ . (7.16)

Require next that aµνtν = 0 for a given tν :
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ibµ(kνtν) = aµνtν − ikµ(bνtν) − 1
2 tµaρ

ρ . (7.17)

We are done if we can eliminate bνtν on the right hand side. Multiply (7.17)
with tµ. The result is an equation from which bνtν may be solved, if kνtν �= 0.
Substitute that again in the right hand side of (7.17). The final expression for
bµ is not important – what matters is that it exists.

7.2 The effect of a gravitational wave on test masses

We consider the dynamics of a free test mass in a gravitational wave. Its
worldline is a timelike geodesic, determined by (2.34):

duα

ds
+ Γα

µνuµuν = 0 ; uα =
dxα

ds
. (7.18)

We elaborate this in the TT-gauge, to first order in γαβ . From (2.24) we see
that Γα

µν = O(γ). Therefore it suffices to expand uµ and uν in the second
term in (7.18) to zeroth order, see (3.23): uµ 	 (1, vi/c) 	 (1, 0, 0, 0). The
equation for the test mass motion reads:

duα

dτ
+ cΓα

00 = 0 . (7.19)

We conclude from (3.16) that Γα
00 = 1

2ηαλ(2γλ0,0 − γ00,λ) = 0 because γµν =
aµν exp(ikαxα) in the TT-gauge, and γλ0 = 0 because aλ0 = 0. It follows
that uα(τ) = uα(0), and if the test mass is at rest at τ = 0, it remains at
rest as the wave passes by.1 Superficially, it seems that the test mass does
not move. However, in the TT-gauge we are using very special co-ordinates.
It turns out that the co-ordinates have been chosen so that they move along
with the particle. Let us look at the behaviour of test masses on a circle in
the x3 = 0 plane, orthogonal to the direction of wave propagation, Fig. 7.1.
The co-ordinates of P are x1 = l0 cos θ, x2 = l0 sin θ and x3 = z = 0. Because
g0i = γ0i = 0 we can find the physical distance between the origin O and P
by integrating (3.7) along OP . The integration is trivial because gij does not
depend on x1 and x2. The distance l between O and P becomes (i = 1 or 2):

l2 = − gijx
ixj

= (1 − γxx)l02 cos2 θ + (1 + γxx)l02 sin2 θ − 2γxyl0
2 sin θ cos θ

= l0
2
(
1 − γxx cos 2θ − γxy sin 2θ

)
, (7.20)

so that
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gx y =  0

gx x =  0

gx y =  0

q

Fig. 7.1. Left: A ring of test particles perpendicular to a gravitational wave is
periodically deformed as shown to the right. Each test mass moves along a geodesic
and senses no acceleration. However, if O and P are materially connected, they
experience a tidal acceleration l̈, see § 7.4.

l / 2

x

y

z

Fig. 7.2. A γxx �= 0 gravitational wave propagating in space. The whole pattern
moves with the speed of light along the direction of propagation (the z-axis), and
γxx (and γxy) are independent of position in planes perpendicular to the direction
of propagation. Since the expected wave frequencies are less than a few kHz, the
wavelengths λ are large, at least 100 km.

l 	 l0
(
1 − 1

2γxx cos 2θ − 1
2γxy sin 2θ

)
. (7.21)

Since γxx , γxy ∝ exp(ikαxα) = exp
(
iΩ(t − x3/c)

)
= exp(iΩt) we see that

the ring of test masses is deformed periodically as in Fig. 7.1. There are two
independent linearly polarized waves. The directions of polarization differ by
an angle of 45◦. From these two waves one may construct circularly polar-
ized waves, as usual. In such a circularly polarized wave, the test particles of
Fig. 7.1 describe small circles around their unperturbed position.

1 This is no longer the case if we would work to second order in γ.
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Exercise 7.2: Show that the distance between two test masses on the z-axis
does not change. The wave is therefore transverse at least up to order γ.

Hint: Locate the particles in x1 = x2 = 0, and x3 = 0 and x3 = ε → l2 =
−g33ε

2 = −η33ε
2 = ε2 because γzz = 0.

Exercise 7.3: Estimate the acceleration experienced by an extended body
due to the passage of a gravitational wave.

Hint: (7.12): the action of the wave (i.e. γxx and γxy) is independent of position
in planes ⊥ z-axis, but different in planes at different z. A ‘pencil’ along
the z-axis will not feel the wave (exercise 7.2). Pencil ⊥ z-axis: (7.21) →
a = l̈ = − 1

2 l0γ̈xx ∼ l0γΩ2 assuming γxy = 0, γxx = γ cos Ωt and cos θ = 0.
The wave causes a tidal acceleration ∝ size of object. Take the Space Station
(l0 = 100m) and γ = 10−6, Ω/2π = 5Hz → a ∼ 0.1m s−2 → Station is
periodically stretched and compressed with a force equivalent to 0.01 g.

7.3 Generation of gravitational radiation

The amplitude of gravitational waves is expected to be extremely small,
γxx , γxy ∼ 10−20, and the reasons are twofold: the enormous distance of po-
tential sources, and the fact that gravitational radiation is inherently weak
because there is no dipole radiation. To illustrate this, consider electromag-
netic radiation of a source of size 2R. The radiation consists of the sum of
the various multipole contributions, the dipole radiation usually being the
strongest. At large distances from the source (r � R), the vector potential in
the Lorentz gauge is given by:

Arad(r, t) =
1
cr

ḋ(t − r/c) +
1
cr

∑
multipoles , (7.22)

where d = Σ eiri is the electric dipole moment of the source and ˙ = ∂/∂t. The
power emitted in electric dipole radiation is proportional to d̈ · d̈. The next
terms in (7.22) are those of the magnetic dipole moment Σ ei(r × v)i and
the electric quadrupole moment Σ ei(3rr − r2I)i of the source. The power
emitted in electric quadrupole and magnetic dipole radiation is a factor of
(kR)2 ∼ (R/λ)2 smaller than that in electic dipole radiation. In the case of
gravitational radiation, the (mechanical) dipole moment equals d = Σmiri.
However, d̈ =

(
Σmiṙi

)
˙ = (P tot)˙ = 0. There is no dipole radiation because
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2R T mn  = 0   (vacuum)

T mn = 0

r

Fig. 7.3. A source of characteristic size R and Schwarzschild radius rs radiates
gravitational waves that are detected at a large distance r. The amplitude of the
waves is given by (7.25).

the total momentum P tot of the system is constant. And the analogon of mag-
netic dipole radiation is absent because the angular momentum is conserved.
The first non-vanishing contribution is generated by a variable quadrupole
moment.2

Assuming that the deviations from the Lorentz metric in the source are
small, the generation of gravitational radiation is described by eq. (3.52): 3

�hµν = − 16πG

c2
Tµν . (7.23)

We shall now estimate the order of magnitude of hµν far from the source. The
radiation field there consists of a superposition of spherical waves of different
frequencies of the type:

hµν =
Hµν

r
exp{i(Ωt − kr)} , (7.24)

with Ω2 = (kc)2, the dispersion relation (7.7), see exercise. We neglect the θ, ϕ
dependence of Hµν because all we are interested in is an order of magnitude.
Directly exterior to the source, in r ∼ R (see Fig. 7.3), we have hµν ∼ Hµν/R.
Next we estimate in (7.23) for r 	 R : � ∼ R−2 and Tµν ∼ ρuµuν ∼ ρv2/c2,
so that

2 For sources of gravitational radiation see e.g. Schutz, B.F., Class. Quantum Grav.
13 (1996) A219; 16 (1999) A131.

3 Strictly speaking T µν in (7.23) describes only motion due to other forces than
gravity. Radiation from two compact binary stars whose motion is determined
by gravity should actually be found by solving �hµν = 0 with two Schwarzschild
singularities in r1(t) and r2(t) as a boundary condition. However, it can be shown
that the result coincides with the solution of (7.23) up to O(γ) if one uses in T µν

the velocities following from classical mechanics.
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hµν

R2
∼ G

c2

ρv2

c2
.

One might object that Tµν ∼ ρ when µ = ν = 0, but according to (7.11)
h0α does not contribute. With the help of M ∼ ρR3 we find that near the
source hµν ∼ rs(v/c)2R−1, and this should also be equal to Hµν/R, or Hµν ∼
rs(v/c)2. At the observer we have hµν ∼ Hµν/r, and we arrive at

γµν = hµν ∼
(v

c

)2 rs

r
∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
ωR

c

)2
rs

r
for v = ωR ,

r2
s

R r
for v2 = GM/R .

(7.25)

Here we distinguish two archetypical cases: a bar rotating at a given angular
frequency ω, and a binary system where v can be estimated by the classical
circular orbit speed. This estimate (7.25) is valid if the source is far removed
from spherical symmetry, and v � c. Without proof we mention that the
average energy flux density F of a gravitational wave is given by (see e.g.
Kenyon (1990)):

F =
c3

16πG
〈γ̇2

xx + γ̇2
xy〉 ; ˙ = ∂/∂t . (7.26)

The existence of gravitational waves has been demonstrated indirectly
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T

period  T

period  T/2

period  T

Fig. 7.5. Top: gravitational radiation of a rotating object has, theoretically, a pe-
riod T because the source needs T seconds to return to the same configuration.
Bottom: the radiation is emitted by the equivalent quadrupole, whose time depen-
dence determines the spectrum. For small ellipticity the quadrupole rotates almost
uniformly and the radiation is practically monochromatic with frequency 2/T , since
the quadrupole needs T/2 seconds to return to a physically identical configuration.
Not all periodic sources emit at twice the fundamental frequency: a rotating bar
does, but a harmonically oscillating bar emits at the fundamental frequency. For
binaries in a highly elliptic orbit the radiation takes the form of a series of pulses
separated by the orbital period T . The spectrum features emission of higher har-
monics because these are now present in the time dependence of the quadrupole.

but convincingly in the compact binary system of which PSR 1913+16 is a
member. The system loses energy in the form of gravitational radiation, and
this shows up as a slowly decreasing orbital period Pb which is now 27906 s or
7.75 hr, Fig. 7.4. Observations carried out over the past 25 years have shown
that Ṗb = −(2.422 ± 0.006) × 10−12, which agrees within the measurement
error (0.3%) with the prediction of GR: (Ṗ obs

b − Ṗ gal
b )/ṖGR

b = 1.0032±0.0035.
The term Ṗ gal

b is due to a small relative acceleration between the binary
pulsar and the solar system. This is because the binary pulsar is closer to
the galactic centre than the Sun, and is gradually overtaking us on account
of its larger galactic orbital velocity. This causes a measurable correction
Ṗ gal

b = −(0.012 ± 0.006) × 10−12. This high precision can be achieved be-
cause the pulsar is a very accurate clock, and because the system is clean. 4

The orbital shrinking due to emission of gravitational waves of the newly dis-
covered binary pulsar J0737-3039A/B is expected to be detected soon, and
should permit an even more accurate test.

Exercise 7.4: Prove that (7.24) is a solution of �hµν = 0.

4 Taylor, J.H. and Weisberg, J.M., Ap. J. 345 (1989) 434; Damour, T., Class.
Quantum Gravity 10 (1993) S59; Taylor, J.H., Class. Quantum Gravity 10 (1993)
S167.
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Hint: � = c−2∂2
t −∇2 = c−2∂2

t − r−2∂rr
2∂r , because we neglect the depen-

dence on θ and φ.

Exercise 7.5: Estimate the order of magnitude and the time depencence of
γµν of the following sources: (a) asymmetric collapse of supernova 1987a in
the Large Magellanic Cloud (r = 52 kpc); take rs ∼ 4 km (∼ 1.4M�) and
R ∼ 10 rs. (b) close encounter of two 1M� black holes in the centre of our
galaxy (r = 8 kpc); take rs = 6 km, and R = 104 km, for example. (c) the
compact binary system containing PSR 1913+16 (r ∼ 8 kpc); take rs ∼ 8
km (2 × 1.4M�), R = semi-major axis of relative orbit = 2 × 106 km. (d) a
rotating egg-shaped neutron star (due a strong magnetic field). Take r = 2
kpc (Crab pulsar), rs ∼ 4 km and R ∼ 2rs.

Hint: (a) γµν
∼< 2.5 × 10−19. On account of (6.8) we expect a brief radiation

pulse of ∼ 10µs. Unfortunately no detector was operational at the time of
the event, in contrast to neutrino detectors. (b) γµν

∼< 10−20. The radiation is
a pulse lasting R/v ∼ (R/rs)1/2(R/c) ∼ 1 s. (c) γµν

∼< 10−22. The radiation is
periodic at 1

2× orbital period = 3.88 hours, see Fig. 7.5. (d). γµν
∼< 3× 10−17!

But the shape of the star will be almost spherically symmetric, hence γµν

considerably smaller.

Exercise 7.6: Compute Ṗb of PSR 1913+16 from Fig. 7.4, right.

Hint: Expand the period P (t) = Pb + Ṗbt+ · · · . The number of periods n in a
certain time interval equals n =

∫
dt/P , and n0 =

∫
dt/Pb if the period were

constant. The cumulative shift ∆t of the periastron passage is ∆t 	 (n0−n)Pb,
or

∆t 	 Pb

∫ (
1
Pb

− 1
P

)
dt 	

∫ (
1 − Pb

Pb + Ṗbt

)
dt

	
∫

Ṗbt

Pb
dt =

Ṗbt2

2Pb
, (7.27)

and Pb = 27906 s, and from Fig. 7.4 we see that ∆t = −14 s in t = 18 years.

Exercise 7.7: Show that the flux density of a weak gravitational wave with
γ 	 10−22 and a frequency of Ω/2π = 1kHz is about equal to the optical flux
density of the full moon (∼ 3 erg cm−2 s−1 at the Earth). In this sense sources
of gravitational waves shine very brightly in the sky! Explain this paradox.
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Fig. 7.6. An idealised detector for gravitational waves consisting of two masses
connected by a spring.

Hint: Estimate γ̇2
xx + γ̇2

xy ∼ Ω2γ2 in (7.26). The energy flux in gravitational
waves is large, but the relative amplitude γ is small. The stiffer the medium,
the smaller the amplitude of a wave at a given energy flux. Spacetime behaves
as a very stiff medium. Sources of gravitational waves radiate in general con-
siderable amounts of energy, but the waves pass through everything without
leaving hardly any physical effect.

7.4 Bar detectors

Detection of gravitational waves is very difficult because the expected am-
plitudes are so small. Fourty years ago Weber experimented with aluminium
bars that were isolated from the environment as much as possible. We may
model such a detector as two masses connected by a spring, i.e. as a damped
harmonic oscillator with frequency ω0/2π, see Fig. 7.6. The equation for the
distance ζ of the masses is: ζ̈ = −2εζ̇ − ω0

2ζ. The effect of a weak gravita-
tional wave can be described by adding the acceleration l̈ due to the wave on
the right side.5 Let γxy = 0 and θ = 0 in (7.21), i.e. we consider one wave
and a detector aligned along the x-axis of Fig. 7.2, so that l̈ = − 1

2 l0γ̈xx. The
equation for ζ is then

ζ̈ + 2εζ̇ + ω0
2ζ = − 1

2 l0γ̈xx . (7.28)

Since γxx is independent of position along the detector we may put γxx =
γ cos Ωt. The maximum amplitude equals (see exercise):

ζmax = 1
2 l0γQ ; Q =

ω0

2ε
= quality factor . (7.29)

For Q = 105, γ = 10−20 and l0 = 2 m we have ζmax ∼ 10−13 cm, about the
size of an atom, which nicely illustrates the detection problem. An additional

5 See e.g. Misner et al. (1971) p. 1004 ff; Schutz (1985) p. 222.
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Fig. 7.7. Close up of the MiniGRAIL detector under development in Leiden. It
consists of a CuAl sphere of 68 cm diameter suspended by a thin rod. The resonance
frequency is 2.9 kHz, the bandwidth 230 Hz. The sphere carries several transducers
that mechanically amplify and detect the vibration. The theoretical sensitivity of
this 20 mK cryogenic detector is ∼ 4 × 10−21. A spherical detector can determine
the direction n of the incoming wave (up to a ±n uncertainty) because the relative
excitation levels of the quadrupole modes of the sphere depends on n. Image credit:
A. de Waard and G. Frossati. See http://www.minigrail.nl/

complication is that of the order of Q waves are needed to excite a resonant
detector to its full amplitude ζmax, which renders detection of bursts of radia-
tion more difficult. And ζmax is independent of l0 since ω0 ∝ sound speed / l0.
Bar detectors are sensitive in a narrow frequency interval ∆Ω ∼ ω0/Q around
ω0, and seem therefore more suited for detection of quasi-periodic radiation,
as emitted by narrow binary systems.

Noise is a problem of overwhelming importance. At room temperature the
amplitude ζ of thermally excited oscillations is also about 10−13 cm. We-
ber had two detectors operating in coincidence at room temperature, at a
frequency of ω0/2π = 1660 Hz. Coincidence measurements by independent
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detectors at different locations are essential to eliminate chance detections
that are actually large noise peaks. There are still a few bar detectors oper-
ating at room temperature and they attain a sensitivity of γ ∼ 10−16. By
cooling to liquid helium temperatures (around 4K) the NIOBE, EXPLORER
and ALLEGRO bar detectors reached a sensitivity of γ ∼ 6 × 10−19. This
development took place during the eighties and nineties of the previous cen-
tury. To detect the bar vibrations they are amplified, usually by a resonant
transducer that is read out by a squid. In the near future detectors of the third
generation NAUTILUS and AURIGA will become operational. These will be
cooled to ∼ 0.1 K. The MiniGRAIL project develops a spherical cryogenic
(20 mK) detector in the Netherlands, and a similar detector is being built in
São Paulo.6

Exercise 7.8: Prove (7.29).

Hint: Take γxx = γ exp(iΩt) and ζ = ζ̂ exp(iΩt) in (7.28) → (−Ω2 + 2iεΩ +
ω0

2)ζ̂ = 1
2 l0γΩ2. The solution is ζ = Re{ζ̂ exp(iΩt)} = Re{|ζ̂| exp(iφ) ·

exp(iΩt)} = |ζ̂| cos(Ωt + φ) for certain φ. Ergo ζmax = maxΩ |ζ̂|. A good
detector has ε � ω0 (Q � 1), and then the maximum is located practically
at Ω = ω0.

7.5 Interferometer detectors

An alternative detection technique is based on Michelson interferometers.
These are more expensive but offer two advantages: the sensitivity can be
higher and they cover a broad frequency band. We analyse the operation of
such a detector, see Figs. 7.8 and 7.9. The laser beam enters the arms through
a beam splitter. The beams then travel back and forth between two mirrors
on each arm that are suspended so that they can move freely in the direction
of the beam. We assume an ideal orientation: the gravitational wave propa-
gates perpendicularly to the plane defined by the arms, that are aligned along
the x and y-axis as in Fig. 7.2. The wave induces a frequency shift7 δν/ν0 =
(ν2 − ν0)/ν0 = dt0/dt2 − 1 in the returning beams with respect to the laser,
see Fig. 7.10. The induced phase differences in the two arms have opposite

6 For information on existing and planned bar detectors see Blair (1991); Saulson
(1994); Ricci, F. and Brillet, A, Annu. Rev. Nucl. Part. Sci. 47 (1997) 111, and
Ju, L. et al., Rep. Prog. Phys. 63 (2000) 1317.

7 Actually dτ0/dτ2 − 1, but g00 = 1.
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Fig. 7.8. Areal view of the LIGO interferometer at Hanford (WA), showing the
central housing and the two arms of 4 km length. The other LIGO interferometer
is located 3000 km away in Livingstone (LA). Courtesy of California Institute of
Technology.

light bounces 50
times between the
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mirrorrecycling
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km

Fig. 7.9. Principle of the LIGO Michelson interferometer.

sign, and show up as intensity variations upon interference on the detector (a
photodiode). We take once more γxy = 0, γxx = γ cos Ωt, and focus attention
on the x-beam. Then (7.13) reduces to c2dt2 = (1 − γ cos Ωt)dx2 :

dx = ± c (1 − γ cos Ωt)−1/2dt 	 ± c (1 + 1
2γ cos Ωt) dt . (7.30)
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Fig. 7.10. Null geodesics of photons propagating between the mirrors along the x-
arm of the interferometer. The geodesics of subsequent wave crests are not congruent
because the metric depends on time. The mirrors have fixed spatial co-ordinates
which we take to be x = 0 and x = l0.

+,− for beams propagating to the right and left, respectively. Since the motion
of the mirrors in the direction of the beam is free, their co-ordinates x = 0 and
x = l0, according to § 7.2, do not change when a gravitational wave passes.
Therefore we may integrate (7.30), for a beam propagating to the right in
Fig. 7.10:

l0
c

=
∫ t1

t0

(1 + 1
2γ cos Ωt) dt

= t1 − t0 +
γ

2Ω
(sin Ωt1 − sin Ωt0) . (7.31)

For the returning beam after reflection we take the − sign in (7.30), and
an extra − sign because we integrate over x from l0 to 0. As a result, the
expression for a beam propagating to the left emerges by substituting t0 → t1,
t1 → t2. Adding these two gives:

t2 − t0 =
2l0
c

− γ

2Ω
(sin Ωt2 − sin Ωt0) . (7.32)

To zeroth order t2 = t0 +2l0/c, which we use to eliminate t2 in the first order
term on the right:

t2 − t0 =
2l0
c

− γ

2Ω
{sinΩ(t0 + 2l0/c) − sin Ωt0}

=
2l0
c

− γ

Ω
sin

(
Ωl0
c

)
cos(Ωt0 + const) . (7.33)
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Fig. 7.11. Expected sensitivity of LISA and LIGO. The U-shape reflects the fac-
tor sin(ΩL/c) in (7.35). From LISA System and Technology Study Report ESA-
SCI(2000)11.

In reality the beam travels back and forth n times between the mirrors, and it
is easy to see that the same relation holds with l0 → L = nl0 = effective arm
length. Differentiation of (7.33) produces dt2 − dt0 = γ sin(ΩL/c) sin(Ωt0 +
const) · dt0, or:

δν

ν0
=

dt0
dt2

− 1 	 − γ sin
(

ΩL

c

)
sin(Ωt + const) . (7.34)

We have dropped the index 0 on t0 on the right. The frequency shift is far too
small to be measurable, but the phase difference δψ is not:

δψ = 2π

∫
δν dt =

γω0

Ω
sin

(
ΩL

c

)
cos(Ωt + const) , (7.35)

with ν0 = ω0/2π = laser frequency, Ω/2π = frequency gravitational wave.
The factor sin(ΩL/c) in (7.35) determines a broad frequency range where the
detector is sensitive, centered on ΩL/c = π/2 or Ω/2π = c/4L. LIGO has an
effective arm length L ∼ 500 km and a laser frequency of ν0 = 3 × 1014 Hz
(λ = 1µ). The maximum sensitivity lies around Ω/2π ∼ 150Hz, see Fig. 7.11,
and the expected phase shift is very small: δψ 	 γω0/Ω = 2 × 1012γ. The
phase shift δψ of the y-beam has the opposite sign.
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Fig. 7.12. A gravitational wave will stretch and compress the wavelength of the
laser beam and the arm length of the interferometer in equal proportion. On this
account no phase difference would develop, see text.

The physics of interferometer detectors

In view of the interest these interferometer detectors will draw in the coming
decades we analyse their operation in some detail. Fig. 7.12 raises a basic
question. A gravitational wave stretches the arm of the interferometer and
the wavelength of the laser beam proportionally. Hence there are no phase
differences and the detector will not work. Where is the catch? The argument
is correct in the limit of small L. In that case (7.35) says that δψ → 0. But
when L is so large that the travel time of the laser beam is of the order
of the period of the gravitational wave, then the laser beam is no longer a
standing wave but a travelling wave. The wave train becomes a local entity
travelling with speed c with respect to the local track as it is alternatingly
being stretched and compressed. And then phase differences do develop.

Consider a beam propagating to the right, assuming cos Ωt > 0. Then
(7.30) tells us that dx > cdt. The co-ordinate speed of light is larger than
c, and it is straightforward to see from (7.13) that the co-ordinate speed in
the y-arm is smaller than c. This generates a time difference and hence a
phase difference between the two beams as they interfere on the detector, see
Fig. 7.13, top panels. However, we may also write (7.30) as

dl ≡ (1 − 1
2γ cos Ωt) dx = cdt , (7.36)

where dl is the physical length corresponding to the co-ordinate distance dx
according to (7.21). In other words, dl = cdt and that holds for forward and
backward propagating beams. This says that the photons behave as cyclists
moving at speed c with respect to the local track as it is periodically stretch-
ing and shrinking, see Fig. 7.13, lower panels. For cosΩt > 0 the physical
length of the x-track is reduced, that of the y-track increased by an amount
δL ∼ γL (L = nl0). Two things happen now. The wave trains are slightly
compressed and stretched (blue or redshifted), just like the track, but that
is too small to be observable. In the second place there is a difference in
arrival time δt ∼ γL/c, corresponding to a phase difference δψ ∼ γω0L/c,
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Fig. 7.13. An interferometer detector as a dual race track for photons. The grav-
itational wave propagates along the z-axis. A laser beam may be thought of as a
series of wave crests that follow null geodesics as in Fig. 7.10. Here we follow only
one wave crest. The top two panels are co-ordinate pictures. Two laser wave trains
start in O at t = 0. As long as cos Ωt > 0, the co-ordinate speed of light on the
x-track, dx/dt, is larger than c, but smaller than c on the y-track. However, the
co-ordinate length of the track is constant. The top right panel shows the positions
after a time δt = l0/c. The wave trains arrive in O with a time difference (in real-
ity the beams bounce back and forth many times). The lower two panels show the
equivalent geometrical pictures, see text, and Fig. 2.1.

which is essentially (7.35) for ΩL/c � 1. When ΩL/c ∼ 1 the computation of
δt requires an integration and yields (7.35). Optimal operation (maximal δt)
occurs when the duration c/L of the race comprises a quarter of the gravita-
tional wave period. If the race takes longer (larger L) the relative stretching
and compressing of the tracks reverses and the net δt becomes smaller. If
ΩL/c = π the gain δt accumulated during the first quarter of the wave period
is undone during the second quarter, and the net gain δt becomes zero, see
(7.35). This conceptual picture of photons as cyclists on a shrinking or stretch-
ing road is also useful for understanding the shape of our past light-cone in
cosmology, see § 11.2.

Detector signal

In order to give the reader some idea of the problems involved in the interfer-
ometric detection of gravitational waves, we close this chapter with a (much
simplified) estimate of the flux on the detector. Denoting the unperturbed
phase as ψ0 = ω0t, and time averaging as 〈·〉, the photodiode measures an
intensity
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Fig. 7.14. The Laser Interferometer Space Antenna (LISA), a joint ESA-NASA
project, to be launched around 2015. From LISA System and Technology Study
Report ESA-SCI(2000)11.

Iout = 〈[A cos(ψ0 + δψ + α) + A cos(ψ0 − δψ)]2〉

	 1
2I0 [1 + cos(2δψ + α)] . (7.37)

The phase difference α between the beams is a matter of fine tuning the arm
length. For zero phase difference the detector sees the full laser power I0 so,
ignoring optical losses, I0 = Iout = 〈(2A cos ψ0)2〉 = 2A2. Relation (7.37) says
that Iout = 0 for α = π and δψ = 0, but optical imperfections will prevent
complete nulling and we should expect rather a dark signal Iout = εI0. So

Iout 	 1
2I0 [1 + ε + cos(2δψ + α)] (7.38)

is more realistic. For example, an imbalance δA in the beam amplitudes can be
shown to imply ε = 1

2 (δA/A)2 for α = π. The interferometer should operate
close to α = π because otherwise the detector sees a large fraction of I0 and the
associated laser noise, from which the small superposed signal can no longer
be extracted. But at α = π we have Iout 	 I0[ε + 2(δψ)2] which is even worse
since, as derived above, δψ 	 2×1012γ 	 2×10−9 for γ = 10−21. The signal is
distorted, ∝ (δψ)2, and so small that it would drown in the dark current. The
solution is rapid phase modulation around α = π. Phase modulators between
the beamsplitter and the first mirrors (not shown in Fig. 7.9) add a phase
φ sinωmt to one beam and −φ sin ωmt to the other. We take α = π, and since
δψ � φ � 1 we expand to first order in δψ and to second order in φ :

Iout 	 1
2I0 [1 + ε + cos(2δψ + 2φ sin ωmt + π)]
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	 1
2I0 [ε + φ2 − φ2 cos 2ωmt + 4φ δψ sin ωmt] . (7.39)

To see that this a much better arrangement, let’s take ε ∼ φ2 ∼ 10−6. The
dark signal is ∼ 10−6I0 and has a zero and a double frequency component.
The signal δψ is now encoded as the amplitude of a periodic signal at the
modulation frequency (which is in the MHz range). This is a great advantage.
The modulation depth is 4φ δψ/(ε + φ2) ∼ 2δψ/φ ∼ 4× 1015γ ∼ 4× 10−6 for
γ = 10−21, which is small but not impossible. The different frequency depen-
dence allows easy separation of the various components. The phase modulation
has an important extra bonus in that it is very effective in suppressing certain
types of noise.

Suppose we want to keep the phase difference α constant at the 10−3 ra-
dian level. Since the laser wavelength λ is 1µm, that corresponds to a distance
of only 10−3λ/2π ∼ 0.1 nm over an arm length of 4 km! It follows that an
active phase locking system is indispensable, as the seismic perturbations are
much larger. The question is how that can be done without disturbing the
measurements. The trick is, briefly, to reset the phase at a rate that is outside
the measuring bandwidth (Fig. 7.11). For more information on these issues
and many other experimental finesses and complications we refer to Blair
(1991) and Saulson (1994).

Exercise 7.9: Check the details of the derivation of (7.37) and (7.39).

Hint: Take a = ψ0 + δψ +α and b = ψ0 − δψ and use cos a+cos b = 2 cos[(a+
b)/2] cos[(a − b)/2]; (a + b)/2 is a fast variable and 〈cos2[(a + b)/2]〉 = 1

2 →
Iout = 2A2 cos2[(a− b)/2]. Use 2 cos2 x = 1+cos 2x → Iout = A2[1+ cos(a−
b)]. For (7.39) write a = 2δψ and b = 2φ sin ωmt. Then cos(a + b + π) =
− cos(a + b) 	 −[1− 1

2 (a + b)2] 	 −1 + 1
2 (2ab + b2), since a � b � 1. Finally

2 sin2 x = 1 − cos 2x.

Projects under development

Interferometers for the detection of gravitational radiation are in an advanced
state of development. The two most important are the LIGO project (USA),
Fig. 7.8,8 and the Italian/French Virgo project, a single 3 km interferometer

8 Abramovici, A. et al., Science 256 (1992) 325; Barish, B.C. and Weiss, R., Physics
Today, October 1999, 44; and http://www.ligo-wa.caltech.edu.
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under construction at Cascina near Pisa.9 These projects should be taking
science data on a regular basis within a few years. Two smaller projects are the
British-German GEO-600, and the Japanese TAMA-300 (both operational).

The seismic background renders measurements below ∼ 10 Hz impossible
on Earth. Detection of low frequency gravitational waves must be done from
space. Through Doppler tracking of the ULYSSES and GALILEO spacecraft
an upper limit of γ ≤ 10−15 has been set in the range 0.1− 10 mHz. ESA and
NASA are studying the ambitious LISA project (Laser Interferometer Space
Antenna),10 see Fig. 7.14.

9 Ricci, F. and Brillet, A., Annu. Rev. Nucl. Part. Sci. 47 (1997) 111, and
http://www.virgo.infn.it/

10 LISA System and Technology Study Report, ESA-SCI(2000)11, July 2000;
websites: http://sci.esa.int/categories/futureprojects/ and
http://lisa.jpl.nasa.gov.
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Fermi-Walker Transport

In § 2.4 we investigated parallel transport of a vector along an arbitrary world-
line xµ(s). The motivation was that we should be able to compare, at different
places along the orbit, the vectors associated with a point mass, such as the
speed or the spin. The vectors are supposed to be known along the orbit,
and we compare the vector A with A′, obtained by parallel transport, see
Fig. 2.4. If these two do not coincide we say that the vector has intrinsically
changed due to influences other than gravity. The actual change of the vector
A along the worldline is a matter of studying the dynamics. We know that the
4-velocity uµ is by definition tangent vector and uµuµ = 1, but the change of
the spin vector for example depends on the applied torque. Here we analyse
a seemingly innocuous question: a spinning top moves along a worldline that
is not a geodesic, i.e. the top experiences an acceleration, but there are no
external torques. How does the spin axis behave? The result will be used to
derive the Thomas precession of the electron and the geodesic precession of a
gyroscope.

8.1 Transport of accelerated vectors

A test mass moves along its worldline W due to gravity and other forces, and
xµ(s) is determined by eq. (3.60), see Fig. 8.1. Now imagine that the test mass
carries orthonormal unit vectors, the 4-velocity uµ and nµ

i (i = 1, 2, 3). In the
local rest-frame uµ = (1, 0, 0, 0). The nµ

i = (0,ni) are spacelike, nµ
i njµ = −δij

and uµniµ = 0. The unit vectors ni may be thought of as defined by the
spin axes of ideal precession-free gyroscopes (no external torques). Having
defined the physical situation in the rest-frame, we now seek a mathematical
description of the change or ‘transport’ of uµ and nµ

i , or rather of Aµ (a linear
combination of uµ and the nµ

i ) along xµ(s) in an arbitrary reference frame. We
surmise that the transport law is a generalisation of parallel transport, and
try to achieve our goal with an extra term in (2.28). Accordingly, we define
the following operator on xµ(s):
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P

Q

ua

R

W

va uaua

G

Fig. 8.1. Introducing Fermi-Walker transport. If there is only gravity, a test mass
with initial 4-velocity uα in P moves on a unique geodesic G, but in the presence
of additional non-gravitational forces it moves on a non-geodesic worldline W . The
4-velocity uα = dxα/ds is always tangent to G and to W , and uαuα = 1 (as always).
Parallel transport DAα/Ds = 0 along G carries uα(P ) over into uα(Q) because G
is a geodesic. But parallel transport along W produces some vα(R) �= uα(R). We
seek a generalised (Fermi-Walker) transport law δAα/δs = 0 that carries uα over
into itself and preserves the value of the inner product AαBα of two vectors along
an arbitrary worldline.

δAµ

δs
≡ DAµ

Ds
− Kµ

αAα . (8.1)

D/Ds is the operator (2.26) for parallel transport. We lower the index on
the right hand side of (8.1) by multiplying with gνµ. The result is DAν/Ds−
Kν

αAα (see exercise), and thus we define for covariant vectors

δAν

δs
≡ DAν

Ds
− Kν

αAα , (8.2)

where DAν/Ds is now given by (2.27). The transport law would then be

δAµ

δs
= 0 or

δAν

δs
= 0 , (8.3)

for contravariant and covariant vectors, respectively. With the help of (8.1)
and (2.26) we obtain

δAµ

δs
≡ dAµ

ds
− (Kµ

ν − Γµ
νσuσ)Aν = 0 . (8.4)

This is the explicit form of the so called Fermi-Walker transport law for a
contravariant vector. In order to be able to handle tensors of higher rank we
define for two vectors X and Y , conform relation (2.44):

δ
δs

XY =
δX

δs
Y + X

δY

δs
. (8.5)

We now proceed to determine the tensor Kµν . The inner product AµBµ

of two vectors Aµ and Bµ (i.e. two linear combinations of uµ and the
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nµ
i ) is constant in the local rest-frame. But AµBµ is scalar and therefore

one and the same constant in all frames. This implies according to (2.47)
that DAµBµ/Ds = dAµBµ/ds = 0, though DAµ/Ds and DBµ/Ds in gen-
eral do not vanish since they are not parallel-transported. We elaborate
0 = δ(AµBµ)/δs ≡ (δAµ/δs)Bµ + Aµ(δBµ/δs) :

0 = Aµ DBµ

Ds
+ Bµ

DAµ

Ds
− AµKµ

αBα − BµKµ
αAα

=
D
Ds

(AµBµ) − KµαAµBα − KµαAαBµ

= − (Kµα + Kαµ)AµBα . (8.6)

It follows that Kµν must be antisymmetric, Kµα = −Kαµ. It seems natural
to expect that Kµα depends on the 4-velocity, and therefore we try

Kµν = aµuν − uµaν , (8.7)

for a certain vector aµ. A component of aµ parallel to uµ does not contribute
to (8.7), so we may impose without restriction that

aµuµ = 0 , (8.8)

and then we also have that

Kµνuν = aµ . (8.9)

The unknown vector aµ may be found by requiring that uµ obey the transport
law δuµ/δs = 0. With the help of (8.1), (8.8) and (8.12) we get:

0 =
Duµ

Ds
− (aµuα − uµaα)uα =

Duµ

Ds
− aµ , (8.10)

because of (8.8) and uαuα = 1. Consequently:

aµ =
Duµ

Ds
. (8.11)

By comparing with (3.60) we see that aν is equal to the non-inertial acceler-
ation fµ of P divided by m0c

2.

One might object that expression (8.7) is not the most general choice, and
that

Kµν = aµuν − uµaν + Hµν (8.12)
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with antisymmetric Hµν would also satisfy the requirements. We now show
that Hµν = 0 implies the absence of any rotation of spatial vectors in the
local rest-frame, hence absence of external torques. To that end we study the
change of a purely spatial vector nµ in the local rest-frame, where nµ = (0,n)
and uµ = (1, 0, 0, 0), so that nµuµ = gµνnµuν = ηµνnµuν = 0, as before. The
Christoffel symbols are also zero, and Fermi-Walker transport δnµ/δs = 0
implies

dnµ

ds
= (aµuν − uµaν)nν = −uµaνnν . (8.13)

It follows that dni/ds = 0 : the instantaneous rate of change of the spatial
part of nµ is zero, so that there is no instantaneous rotation (but there would
be one if Hµν �= 0).

This completes the derivation of the Fermi-Walker transport law (8.4),
with Kµν given by (8.7), (8.11) and uµ = dxµ/ds. It is a differential equation
specifying the change of an accelerated vector Aµ on which no torques are
exerted in the local rest-frame. We note the following:

(1). The middle term on the right hand side of (8.4) is of special-relativistic
origin. In SR the Γ’s are zero (in rectangular co-ordinates) but Kµν �= 0. This
term is responsible for the Thomas precession.

(2). The last term in (8.4) is a general-relativistic effect. If the only force is
gravity, then xµ is a geodesic → Duµ/Ds = 0 → aµ = 0 → Kµν = 0. And
in that case eq. (8.4) is identical to parallel transport. One of the consequences
is the geodesic precession. Any additional (non-inertial) force causes an extra
Thomas-like precession.

Exercise 8.1: We are using a spacelike unit vector nµ with nµnµ = −1.
Negative lengths, how is that again?

Hint: Very simple. For example, in the local rest-frame nµ = (0, n1, n2, n3) and
nµ = ηµνnν = (0,−n1,−n2,−n3). The value of the scalar nµnµ = −|n|2 = −1
is invariant.

Exercise 8.2: Prove the statement between (8.1) and (8.2).

Hint: § 2.6: gνµDAµ/Ds = gνµAµ
:σ uσ = (gνµAµ):σ uσ = Aν:σ uσ = DAν/Ds.

Furthermore, gνµKµ
αAα = KναAα = Kν

αAα.

Exercise 8.3: Show that aµuµ is indeed zero.
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Hint: aµuµ = 1
2uµDuµ/Ds+ 1

2uµDuµ/Ds = 1
2D(uµuµ)/Ds = 0. This last step

requires that uµDuµ/Ds = uµDuµ/Ds. See previous exercise for inspiration.

8.2 Thomas precession

This is a problem from SR, and the qualitive explanation has already been
given in § 1.1. An electron moves in a circular orbit in the x1, x2 plane.
Spacetime is flat and we use Cartesian co-ordinates so that all Γ’s are zero.
According to (8.4), Fermi-Walker transport of the spin vector sµ is described
by

dsµ

dτ
= cKµ

νsν , (8.14)

because d/ds = (1/c)d/dτ . To determine Kµν we analyse the circular motion
of the electron and take

x1 = r cos ωτ ; x2 = r sinωτ ; x3 = 0 , (8.15)

from which
u1 = c−1 dx1/dτ = − (ωr/c) sin ωτ ;

u2 = (ωr/c) cos ωτ ;

u3 = 0 .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(8.16)

Here ω is the orbital frequency measured in the proper time of the electron;
u0 can be obtained from 1 = uµuµ = ηµνuµuν = (u0)2 − (u1)2 − (u2)2:

u0 =
√

1 + (ωr/c)2 = constant , (8.17)

and this serves to find the relation between proper time τ and laboratory time
t, because u0 = γ = 1/

√
1 − β2, see (3.23). Therefore ωτ = ωt/γ ≡ Ωt, where

Ω = orbital frequency in laboratory time:

γ =
√

1 + (ωr/c)2 ; Ω = ω/γ ;

1
ω

d
dτ

=
1
Ω

d
dt

.

⎫⎪⎬
⎪⎭ (8.18)

Since the Γ’s are zero, we infer from (8.11) and (2.26) that aµ = Duµ/Ds =
c−1duµ/dτ . We may now write (8.14) as:
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Fig. 8.2. Geodesic precession of the vector s analysed in the equatorial plane θ =
π/2 of the rotating reference frame er, eθ, eϕ.

dsµ

dτ
= c

(
aµuν − uµaν

)
sν = −uµ duν

dτ
sν ; (8.19)

uνsν = 0 , (8.20)

because we know that uνsν is constant (Fermi-Walker transport), and that
uµ = (1, 0, 0, 0) and sµ = (0, s) in the local rest-frame, so that uνsν =
ηναuαsν = 0. Because uνsν is invariant (8.20) holds in any frame. Since
u3 = 0 we conclude from (8.19) that ds3/dτ = 0, or

ds3

dt
= 0 . (8.21)

Apparently, the z-component of the spin is constant. The behaviour of s0 fol-
lows from (8.20): 0 = ηνσuσsν = u0s0−u1s1−u2s2 → s0 = (u1s1+u2s2)/u0.
However, s0 has no physical meaning – its ‘function’ is to ensure that uνsν

and sνsν are constant. The physics is in the behaviour of s1 and s2. With
(8.16) and ui = ηiνuν = −ui we obtain:

d
dτ

(
s1

s2

)
=

ω3r2

c2

(
sinωτ cos ωτ sin2 ωτ

− cos2 ωτ − sin ωτ cos ωτ

)(
s1

s2

)
. (8.22)

Express this in laboratory time with (8.18):

d
dt

(
s1

s2

)
= (γ2 − 1)Ω

(
sin Ωt cos Ωt sin2 Ωt

− cos2 Ωt − sin Ωt cos Ωt

)(
s1

s2

)
. (8.23)
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Exercise 8.4: Verify that the solution of (8.23) with initial values s1(0) = s
and s2(0) = 0 is given by

s1 = 1
2s
[
(1 + γ) cos(1 − γ)Ωt + (1 − γ) cos(1 + γ)Ωt

]
;

s2 = 1
2s
[
(1 + γ) sin(1 − γ)Ωt + (1 − γ) sin(1 + γ)Ωt

]
.

(8.24)

Expand for β � 1:

s1 	 s
[
cos 1

2β2Ωt − 1
4β2 cos 2Ωt

]
;

s2 	 − s
[
sin 1

2β2Ωt + 1
4β2 sin 2Ωt

]
.

(8.25)

Verify that the first terms in (8.24) and (8.25) correspond to a rotation of the
spin vector with a frequency

ΩThomas = (γ − 1)Ω orbit 	 1
2β2 Ω orbit , (8.26)

with β 	 ωr/c 	 Ωr/c � 1. The sense of the rotation is opposite to the orbital
rotation. Both second terms in (8.25) describe a small, fast modulation that
averages to zero.

8.3 Geodesic precession

In § 4.4 we analysed the motion of a test mass moving in the Schwarzschild
metric, and found, among other things, that the orbit precesses. This preces-
sion of the perihelium is not the only GR effect. If the test mass behaves as
a vector, as for example a gyroscope, the (spin) vector will also perform a
precession, even when no torque is exerted. We shall now derive this so-called
geodesic precession. Because the body moves along a geodesic we have that
Kµν = 0, in which case (8.4) reduces to the equation for parallel transport:

dsµ

dτ
+ cΓµ

νσ uσsν = 0 . (8.27)

Here sν is the unit vector along the spin axis. The following analysis is a
sequel of § 4.3, and we shall employ the notation we used there. The 4-velocity
uµ = dxµ/ds is given by:1

1 For the geodesic precession the rotation of the Earth is irrelevant. So although
Fig. 8.3 suggests otherwise, the satellite may be taken move on the equator r, θ =
constant of the Schwarzschild metric.
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Fig. 8.3. A gyroscope orbiting a rotating mass like the Earth and moving only under
the influence of gravity should exhibit a geodesic precession and a Lense-Thirring
precession. The experiment is now in progress in the Gravity Probe B satellite,
launched in April 2004 into a polar orbit of 640 km altitude. The star IM Pegasi
(HR 8703) serves as the pointing reference. See text for details. Adapted from: Near
Zero, J.D. Fairbank et al. (eds.) Freeman & Co (1988).

uµ = (cṫ, ṙ, θ̇, ϕ̇) = (cṫ, 0, 0, h/r2)

=
({

1 − 3rs

2r

}−1/2

, 0, 0,
1
r2

{
rrs/2

1 − 3rs/2r

}1/2 )
. (8.28)

At the second = sign we choose a circular orbit: r = constant and θ = π/2, and
we have used (4.34) as well. The last expression in (8.28) follows immediately
from (4.32) and (4.45). Next we write out (8.27) explicitly, and obtain the
following equations (see exercises):

s0 =

√
rrs/2

1 − rs/r
s3 ; (8.29)

ds1

dτ
=

c

r

√
rrs/2

√
1 − 3rs/2r s3 ; (8.30)

ds2

dτ
= 0 ; (8.31)

ds3

dτ
= − c

r3

(
rrs/2

1 − 3rs/2r

)1/2

s1 . (8.32)
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Take d/dτ of (8.32) and eliminate ds1/dτ with (8.30):

d2s3

dτ2
+

c2rs

2r3
s3 = 0 , (8.33)

and it is easy to verify that the same equation holds for s1. The solution with
initial value s3(0) = 0 is:

s3 = sϕ = − s sin ωτ ;

s1 = sr = sr
√

1 − 3rs/2r cos ωτ ;

s2 = sθ = constant ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(8.34)

where

ω = c

(
rs

2r3

)1/2

=
(

GM

r3

)1/2

. (8.35)

The geodesic precession is a consequence of the fact that the precession fre-
quency ω is a little smaller than the orbital frequency, which is equal to

2π

∆τ
= c

(
rs

2r3

)1/2(
1 − 3rs

2r

)−1/2

. (8.36)

Here we have used expression (4.46) for the orbital period ∆τ . After each
orbit the spin vector has rotated over an angle of

ω∆τ = 2π
√

1 − 3rs/2r . (8.37)

The spin vector precesses about an axis orthogonal to the orbital plane, but
the major part of the precession is caused by the fact that the reference
frame itself rotates over an angle of 2π, see Fig. 8.2. When viewed from a
non-rotating frame the precession angle per orbit equals

δψ = 2π
(
1 −

√
1 − 3rs/2r

)
	 3πrs

2r
. (8.38)

Actually, we must still transform to co-ordinate time, but that gives rise to a
correction of higher order. The precession has the same sense of rotation as
the orbit. The physical origin of the precession is that a vector that is parallel
transported constantly changes its direction, due to the curvature of space-
time, see § 2.4. This is visible as a small secular angular rotation. The effect
of geodesic precession has been observed in the binary pulsar PSR 1913+16. 2

What if the central object rotates? In that case its exterior metric is replaced
by the Kerr metric (in good approximation), and frame-dragging (§ 6.5) in-
duces an additional precession, called the Lense-Thirring effect. The LAGEOS
satellites have confirmed the Lense-Thirring effect due to the rotation of the
Earth with a precision of 10%.3

2 Weisberg, J.M. and Taylor, J.H., Ap. J. 576 (2002) 942.
3 Ciufolini, I. and Pavlis, E.C., Nature 431 (2004) 958.
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Fig. 8.4. Inside view of a gyroscope of Gravity Probe B and its housing. The rotor
has a diameter of 3.8 cm, and is made of fused quartz coated with niobium. Image
credit: Don Harley.

8.4 Gravity Probe B

The technology for high-precision measurements of the geodesic precession
and the Lense-Thirring effect has been developed in the USA from the be-
ginning of the 1960s. The outcome of this long development programme, the
longest in NASA’s history to date4, is Gravity Probe B, launched on April 20,
2004, see Fig. 8.3. The satellite carries 4 precision gyroscopes. The geodesic
precession is only 6.6′′ per year, and the Lense-Thirring precession is much
smaller: 0.04′′ per year. The gyros consist of quartz rotors coated with super-
conducting niobium, suspended in an electrostatic field, see Figs. 8.4 and 8.5.
The rotation (about 70 Hz) induces a London magnetic moment that gener-
ates a magnetic dipole field aligned with the spin axis. Its direction, and hence
the orientation of the spin axis can be measured with high precision. 5 There
are many experimental complications. For example, any parasitic torque will
cause the gyroscope to precess, and any non-inertial acceleration induces an
extra Thomas precession. By using a drag-free satellite that literally follows
the inertial motion of one of the the gyroscopes, the residual acceleration will

4 For the programmatic and scientific issues involved see Reichhardt, T., Nature
426 (2003) 380.

5 For more details see Near Zero, J.D. Fairbank et al. (eds.), Ch. 6.1−6.3 (Freeman
& Co 1988); for theoretical aspects see Will (1993) p. 208; Gravity Probe B
website: http://einstein.stanford.edu/
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Fig. 8.5. Gravity Probe B carries four gyroscopes, mounted in a single quartz bloc,
a prototype of which is shown here. The pointing telescope (not shown) is attached
to the flange at the lower end. The whole unit is placed in a much larger helium
dewar. Image credit: Gravity Probe B, Stanford University.

be at the 10−11g level. The gyroscopes have a pointing stability of better than
5 × 10−4 arcseconds over a period of a year!

In closing, we draw attention to two issues. The first is the fact that the
precession angle (8.38) is independent of the spin rate of the gyroscope, and
the same is true for the Lense-Thirring precession.6 This is a reminder of
the physics involved: both effects are a consequence of parallel transport of a
vector in the Schwarzschild or Kerr metric. The nature of the vector is imma-
terial, and so is the existence of mass currents in the gyroscope. A gyroscope is
for many reasons by far the best technical solution, but a non-rotating pencil
would, as a matter of principle, also do very well – if one could eliminate all
parasitic forces and moments.

6 See Will (1993) p. 210.
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The second issue is the pointing reference. Stellar parallaxes and proper
motions are generally larger than the accuracy required for Gravity Probe B.
Therefore the only suitable pointing references are quasars. Quasars are dis-
tant powerful radio sources that are believed to constitute the best available
inertial reference frame. But quasars are too dim in visible light for the small
pointing telescope (aperture 14 cm). Therefore a relatively bright star had to
be found, that is also a strong radio point source, and located sufficiently close
to a few reference quasars to permit measuring the relative positions with the
method of Very Long Baseline Interferometry (VLBI). The outcome is IM Peg
(HR 8703). The proper motion and parallax of IM Peg with respect to the
quasars have been accurately measured in a VLBI programme extending over
many years. In this way the orientation of the gyroscopes can ultimately be
related to the quasar reference frame.

Exercise 8.5: Write down the explicit expression for the Christoffel symbols
necessary to elaborate (8.27).

Hint: From (4.29): 2ν = −2λ = log (1 − rs/r); furthermore θ = π/2. Result:

(4.10) : Γ1
00 =

rs

2r2
(1 − rs/r) ; Γ1

33 = −r (1 − rs/r) .

(4.11) : Γ2
12 =

1
r

; Γ2
33 = 0 .

(4.12) : Γ3
13 =

1
r

; Γ3
23 = 0 .

Exercise 8.6: Show that uµsµ = 0 holds here as well, just as in the case of
Thomas precession. Use that to derive (8.29).

Hint: 0 = gµνuµsν = g00u
0s0 + g33u

3s3; use (4.29) and θ = π/2.

Exercise 8.7: Prove now eqs. (8.30) to (8.32).

Hint: Insert the Γ’s, and u0 and u3 from (8.28), and use (8.29).

Exercise 8.8: Show that a gyroscope in orbit around the Earth at an altitude
of 650 km has a geodesic precession of 6.6′′ per year.

Hint: (8.38) + Keplerian orbit → 3(GMa)3/2/(2c2r5/2) rad s−1, etc.
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Exercise 8.9: We wish to compare the precession amplitudes along er and
along eϕ, see Fig. 8.2. But that is not possible as s1 and s3 in (8.34) have
different dimensions. How is that?

Hint: Physical lengths follow from (3.7)! Amplitudes along the r-direction:
dl2r = −grr(sr)2 	 r2(1 − rs/2r)s2 ; dl2ϕ = −gϕϕ(sϕ)2 = r2s2.

Exercise 8.10: Does a linearly accelerated electron experience any Thomas-
like effect?

Hint: Take the 1-axis in the direction of the acceleration, then u2 = u3 = 0.
According to (8.19) only s0 and s1 will change. To see what actually happens,
assume that the electron experiences a constant acceleration a, and use that
x1 = (c2/a) cosh(aτ/c) + const, x0 = ct = (c2/a) sinh(aτ/c), see Rindler
(2001), so that u0 = cosh(aτ/c) and u1 = sinh(aτ/c). Now solve (8.19).
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The Robertson-Walker Metric

Cosmology is the science that addresses the large-scale structure and evolution
of the universe. Why would that require the framework of GR? Because the
universe as a whole may be regarded as a compact object – in the sense that
its ‘radius’ R is comparable to its Schwarzschild radius! From (4.28) we see
that R ∼ rs if R ∼ 2GM/c2. Now take M = (4πR3/3) ρ and use for R the
Hubble radius c/H0. This is the distance where the expansion speed becomes
formally c according to the primitive Hubble law (9.4). Result:

ρ ∼ 3H2
0

8πG
≡ ρc . (9.1)

The density of the universe should be comparable to the critical density ρc,
a concept that will be explained later. And Table 9.2 shows that this is in-
deed the case. This argument, simple as it may be, does indicate that only
description in terms of GR may be expected to produce meaningful results.
In this chapter we shall review the most important observations, the form of
the metric, the spatial structure of the universe, and the equation of motion
for the scale factor S.

9.1 Observations

On a cosmological scale the smallest relevant unit is a galaxy. Galaxies occur
in aggregates called groups. Our own galaxy and the large spiral galaxy M31
in Andromeda (distance 770 kpc) are the two biggest members of the Local
Group, which has approximately 40 members. Groups in turn form clusters.
Table 9.1 gives some characteristic sizes and distances. From redshift surveys,
Fig. 9.1, it is apparent that matter is distributed in a filamentary fashion, in
concentrations of widely varying size, with 90% of the matter located in walls,
strings and sheets that occupy a relative volume of the order of 10%, while
90% of space is virtually empty (‘voids’). During the past century there has
been an intense debate on the relative densities of various forms of matter
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Table 9.1. Characteristic length scales

galaxy 1− 50 kpc
group 1 Mpc
cluster 10 Mpc
distances between clusters 100 Mpc
most distant clusters 3 Gpc
distance to quasars 4.5 Gpc
distance to horizon 10 Gpc

in the universe. This debate has recently culminated in the publication of
the results of several surveys among which those of the WMAP mission,1 see
Table 9.2. The densities are expressed in terms of the critical density ρc:

ρc =
3H2

0

8πG
= 1.88 × 10−29 h2 g cm−3

	 10−29 g cm−3 , (9.2)

and h is the Hubble constant in units of 100 km s−1 Mpc−1, see (9.5). The
present matter energy density is

εm = Ωmρcc
2 = 2.4 × 10−9 erg cm−3 . (9.3)

Only ∼ 2% of all matter in the universe can actually be seen because it is lu-
minous. The remaining 98% is dark, where dark traditionally means optically
dark. It is only indirectly visible through the gravity it exerts, for example
in the rotation curves of galaxies, and in the velocity distribution of galax-
ies in clusters. To prevent the latter from flying apart they should contain a
lot more matter than we see. Dark matter consists partly of baryons (mainly
hot gas in and between clusters, but also brown dwarfs, old white dwarfs,
etc.). About 80-90% of all baryons is dark. Some of this baryonic dark mat-
ter is now beginning to be seen in UV and X-rays.2 But baryons comprise
only a small fraction of all dark matter. Non-baryonic dark matter consists
of weakly interacting massive particles (WIMPs) of unknown identity.3 The
largest constituent in Table 9.2 is dark energy (not be confused with dark
matter), associated with the cosmological constant, whose nature is not un-
derstood. It seems unlikely that the debate on the values in Table 9.2 has
1 Wilkinson Microwave Anisotropy Probe, see Bennett, C.L. et al., Ap. J. S. 148

(2003) 1, and following papers.
2 Nicastro, F. et al., Nature 433 (2005) 495 and 421 (2003) 719; Kaastra, J.S. et

al., A&A 397 (2003) 445.
3 WMAP excludes the possibility that they are massive neutrinos, since it finds

Ων < 0.015. Current contenders are the neutralino (the lightest supersymmet-
ric particle) and axions. For detection attempts see Sumner, T.J., Living Rev.
Relativity 5 (2002) 4.
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Table 9.2. Relative densities of matter and energy in the universe a

Type Ω = ρ/ρc
b Comment

Matter (Ωm) 0.27 ± 0.04 consists of 3 components
- luminous baryons 0.006 ± 0.003 } total baryons:
- dark baryons 0.038 ± 0.003 } Ωb = 0.044 ± 0.004
- non-baryonic dark matter 0.23 ± 0.04 unknown WIMP c

Dark energy (ΩΛ) 0.73 ± 0.04 unknown origin, § 9.5
Total (Ωm + ΩΛ) 1.02 ± 0.02 geometry of universe is flat

a See 1 and Fukugita, M. and Peebles, P.J.E., Ap. J. 616 (2004) 643;
b ρc = 3H2

0/8πG = 1.88 × 10−29 h2 � 10−29 g cm−3;
c WIMP = Weakly Interacting Massive Particle.

really ended. The WMAP results confirmed the prevailing theoretical preju-
dice of the day and were quickly canonized. We shall follow suit, but note that
the future may hold surprises.

An important observation is that the universe is isotropic. The distri-
bution of matter in space is statistically the same in all directions, also as a
function of distance, i.e. within redshift subclasses. There are obvious evolu-
tion effects. The morphology of the systems changes gradually with distance,
and at large distances we see only quasars, objects 102 − 103 times brighter
than the average nearby galaxy. The Hubble Deep Field observations illus-
trate clearly that the universe did look quite different in the past.4 Hubble
demonstated in 1929 that the universe expands. All galaxies move away from
us on average with a velocity proportional to the distance, but independent
of direction. This universal expansion is referred to as the Hubble flow:

v = H0d , (9.4)

with
H0 = 100h km s−1 Mpc−1 and h = 0.71 ± 0.04 , (9.5)

as measured by WMAP. 1 In fact one measures a redshift z rather than a
velocity. The precise meaning of v and d in (9.4) will be explained in § 11.3.
In physical units:

H0 = (2.3 ± 0.1) × 10−18 s−1 . (9.6)

The peculiar velocities of the systems, i.e. the deviations from the Hubble
flow, are generally small, ∼< 500 km s−1. The Hubble flow is ‘cold’ and this is
because the universe cools adiabatically as it expands.

4 Driver, S.P. et al., Ap. J. 496 (1998) L93; Ferguson, H.C. et al., A.R.A.A. 38
(2000) 667.
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Fig. 9.1. The 2dF galaxy redshift survey comprises about 220, 000 galaxies and
shows that the distribution of matter in the universe is homogeneous at large, but
clumpy on smaller scales. The left slice measures 75◦ × 10◦ and is located in the
Northern galactic hemisphere, the right slice is 80◦×15◦ near the galactic South pole.
Picture taken from the 2dFGRS image gallery. See Colless, M. et al., M.N.R.A.S.
328 (2001) 1039; Peacock, J.A. et al., Nature 410 (2001) 169.

Fig. 9.2. ‘Baby picture’ of the universe: WMAP image of the Cosmic Microwave
Background at λ = 3.2 mm. Monopole and dipole have been subtracted but the
galactic foreground has not. Color coding: black = −200 µK, red = +200 µK. The
minute temperature variations indicate clustering of matter in the early universe.
This is analysed in §§ 10.4 and 11.4. From Bennett, C.L. et al., Ap. J. S. 148 (2003) 1.
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In addition to matter, the universe contains all kinds of radiation, of
which the cosmic microwave background (CMB) has by far the largest energy
density. This radiation had been predicted by Gamov and coworkers in 1948
(T ∼ 5K), as a remnant of a hot early stage of the universe, and was discovered
by Penzias and Wilson in 1965. Observations of the COBE satellite have
shown that the spectrum is to high accuracy a thermal Planck spectrum in
the wavelength range from 10 cm to 0.1 mm with a maximum at λ ∼ 2 mm.
Temperature and energy density are:

T = 2.725 ± 0.002 K ; (9.7)

εr =
4σ

c
T 4 	 4.19 × 10−13 erg cm−3 . (9.8)

The CMB has a dipole anisotropy of |∆T | 	 3.35 ± 0.02 mK, and this is
interpreted as a Doppler shift due to the velocity of the solar system of 369
km s−1 towards galactic co-ordinates (�, b) = (264◦, 48◦) with respect to the
frame defined by radiation.5 After subtraction of the dipole component the
CMB is highly isotropic, ∆T/T 	 10−5 on angular scales ∼> 7◦ (COBE), and
WMAP has improved that to angular scales ∼> 0.2◦.

On theoretical grounds there should also exist a neutrino background with
a temperature and energy density comparable to those of the CMB (§ 12.2).
If we add that to (9.8), the total radiation energy density is:

εr 	 7 × 10−13 erg cm−3 . (9.9)

The conclusion seems obvious: the universe is a space of vast expanse, ex-
tremely cold (2.7 K), and to our standards almost empty. It is isotropic and
evolves with time. An important aspect of the evolution is the expansion,
which should have begun approximately a Hubble time H−1

0 	 14 Gyr ago.
The microwave background is a remnant of a hot early stage of the universe,
called the Big Bang. For an extensive discussion of the observations see for
example Peebles (1993) and Peacock (1999). We return to observational issues
in Ch. 11.

5 This velocity in turn induces an aligned dipole asymmetry in the observed matter
distribution, see Blake, C. and Wall, J., Nature 416 (2002) 150.
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time

space A0 C0B0

C1B1

C2B2

t = t0

t = t1

t = t2

giant
cleft

S(t1)

S(t2)

t = 0

not observable
for A0

not yet 
observable
for A0

Fig. 9.3. Co-ordinate picture of the spacetime of the universe. Our present position
is A0, and shown are our past light-cone, the worldlines of a few galaxies (vertical
lines), and a hypothetical inhomogeneity (‘giant cleft’) that we might get to see in
the future.

9.2 Definition of co-ordinates

Fig. 9.3 shows a spacetime diagram of the universe. We (A0) are only able to
see events located on our past light-cone. We experience our light-cone as a
series of nested, ever larger concentric spherical shells around us, showing an
increasingly younger section of the universe. Because of the observed isotropy,
each shell Σ(ti) must be on average homogenous. Due to our limited techno-
logical capabilities we have not yet been able to detect signals from the early
universe, i.e. from the most distant shells. We now make an assumption about
the part of spacetime that is outside our past light-cone and therefore unob-
servable. To that end we use the cosmological principle, which states that we
(A0) occupy no special position in the universe, and that other observers B0,
C0 in Fig. 9.3 see on average the same universe as we do. Hence if we translate
our light-cone sideways, the aspect of the shells Σ(ti) would not change, apart
from statistical fluctuations (the so-called cosmic variance). The implication
is that every subspace t = constant is isotropic and homogenous on average.
Cosmological principle and the isotropy of the universe imply that it is ho-
mogeneous.

We now come to the definition of rest (xi = constant). We are free to
adopt any definition we like, but there is one that stands out as very natural:
a test mass is at rest if it does not move with respect to the Hubble flow.
That means that the spatial co-ordinates of galaxies are constant (we shall
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AL
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Fig. 9.4. Introducing Gaussian co-ordinates in the spacetime of the universe. The
starting point is a 3-dimensional subspace of spacetime, D, which is spacelike but
otherwise arbitrary (see text). The tangent space of A0 ∈ D is T .

ignore their peculiar velocities). Their worldlines are straight vertical lines in
Fig. 9.3. This figure is a co-ordinate picture, see Fig. 2.1, and contains no in-
formation about the geometry (the geometrical picture appears in Fig. 11.2).
Due to the expansion the geometrical distance between B0 and C0 is larger
than between B1 and C1. It remains possible that the spacetime that we shall
see in the future contains huge inhomogeneities, and that the cosmological
principle will eventually prove to be incorrect,6 see Fig. 9.3. Presently, how-
ever, the assumption that every subspace t = constant is homogeneous and
isotropic is adequate. But it should be clear that very little can be said about
the future of the universe without extra assumptions such as the cosmological
principle.

We assume that spacetime already possesses co-ordinates and a metric,
and we now construct new co-ordinates to simplify the metric. Let the sub-
space D in Fig. 9.4 be spacelike (but not necessarily of the type t′ = constant),
i.e. for every vector nµ′

in the tangent space we have nµ′
nµ′ < 0. The primes

denote the old co-ordinates. Consider an event A0 ∈ D with tangent space
T . We define a vector uµ′

by requiring uµ′
nµ′ = 0 for every nµ′ ∈ T . These

uµ′
are unique, apart from an overall factor, and timelike (see exercise). We

normalize them as uµ′
uµ′ = 1. Next we construct a geodesic L tangent to uµ′

in A0, and we define new spatial co-ordinates (x̃1, x̃2, x̃3) in D (how we do

6 It is a peculiar fact that our universe appears to be homogeneous on the scale of
the Hubble radius c/H0, but inhomogeneous both on much larger scales (predic-
tion of inflation theory) and on much smaller scales (Fig. 9.1).
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that is immaterial). Finally, we assign the following co-ordinates to an event
A on L :

xi = x̃i ;

x0 = arc length s of A0A along L .
(9.10)

This construction is possible because L is timelike. In this way we have defined
well-behaved new co-ordinates {xµ} as long as the different geodesics L do
not intersect. For dxi = 0 (i.e. along L) we have that ds2 = (dx0)2, and
comparing that to ds2 = gαβ dxαdxβ = g00(dx0)2 we conclude that g00 = 1
on L. In the new co-ordinates the 4-velocity of a point on L equals

uµ = ẋµ ≡ d
ds

(s, x̃1, x̃1, x̃3) = (1, 0, 0, 0) , (9.11)

and nµ ∈ T is of the form nµ = (0,n), so that 0 = uµ′
nµ′ = uµnµ =

gµαuµnα = g0in
i. It follows that g0i = 0, because ni is arbitrary. On the

subspace D the metric now has the form

ds2 = (dx0)2 + gik dxidxk . (9.12)

Exercise 9.2 shows that (9.12) holds everywhere. These co-ordinates are called
Gaussian co-ordinates, after Gauss who invented them.

The essence of Gaussian co-ordinates is that the worldlines L of a selected
set of freely falling test masses are taken as the co-ordinate lines of the new
co-ordinate system, and these lines L remain always orthogonal to the sub-
spaces t = constant. Because the derivation is completely general, we may
use Gaussian co-ordinates in any physical situation, also for example in the
Schwarzschild metric. They are not very convenient in that case, but that is
another matter. In cosmology, however, they are very useful. The sections t =
constant are snapshots of the homogeneous and isotropic universe, and the
selected test masses are the galaxies. Because these are at rest (dxi = 0) it
follows from (9.12) that dτ = dt: at any time t all clocks of galaxies tick at
the same rate. This must be so because otherwise a subspace t = constant
would not be homogeneous. In Gaussian co-ordinates the proper time of any
galaxy in this subspace serves as the co-ordinate time t. Since we deal mostly
with objects at rest (galaxies), the notion of proper time plays a minor role
in cosmology. Proper time is only important when we consider motion with
respect to the Hubble flow, as in exercise 9.9.

Exercise 9.1: Prove that uµ′
introduced above (9.10) is unique and timelike.

Hint: Timelike is invariant, so employ the local rest-frame ¯ of A0. With 3
independent nµ one may construct 3 orthonormal spacelike unit vectors; uµ



9.3 Metric and spatial structure 177

must be orthogonal to these (in the sense of the inner product) → uµ ∝
(1, 0, 0, 0), therefore timelike.

Exercise 9.2: Prove that (9.12) is valid everywhere.

Hint: Work out (2.34) along the geodesic L with (9.11) → Γµ
00 = 0. Now use

(2.24) and g00 = 1 on L → gµλgλ0,0 = 0; det{gµλ} �= 0 → gλ0,0 = 0 on
L → gj0 constant on L → gj0 = 0 on L (i.e. everywhere, q.e.d.).

9.3 Metric and spatial structure

Due to the expansion the metric will depend on x0, and that dependence must
be the same for every gik, otherwise anisotropies would develop. Therefore
(9.12) can be written as

ds2 = (dx0)2 + S(t)2aik dxidxk , (9.13)

with aik constant. We may simplify aikdxidxk further by noting that the space
is certainly spherically symmetric around an (arbitrarily chosen) origin. The
implications of that have been elaborated as we discussed the Schwarzschild
metric, § 4.1. The spatial metrics associated with (4.2) and (9.13) at time t1
are

dl2 =

{
e2λdr2 + r2dΩ2

−S2
1 aik dxidxk ,

(9.14)

where dΩ2 = dθ2 + sin2 θ dϕ2 and S1 = S(t1). These two metrics describe
the same space, as both are spherically symmetric around the origin. We
conclude that −aik dxidxk may also be written as (e2λdr2 +r2dΩ2)/S2

1 . After
a rescaling S(t)/S1 → S(t) we find that (9.13) reads

ds2 = (dx0)2 − S(t)2
(
e2λdr2 + r2dΩ2

)
. (9.15)

To find λ(r) we compute the total curvature Ri
i of the subspace t = constant

of (9.15) when S(t) = 1. This Ri
i turns out to be equal to Rµ

µ from (4.19)
with ν = constant (see exercise), or

R = 2
(

2λ′

r
− 1

r2

)
e−2λ +

2
r2

=
2
r2

(
1 − d

dr
r e−2λ

)
, (9.16)

from which it follows that
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k = 0 k =1 k = -1

Fig. 9.5. Two-dimensional analogons of a flat, a spherical and a hyperbolic universe.
After Berry (1978).

d
dr

r e−2λ = 1 − 1
2Rr2 . (9.17)

We now argue that R is constant because the space t = constant is homoge-
neous, and we may integrate:

e2λ = (1 − 1
6Rr2 + A/r)−1 . (9.18)

The integration constant A should be zero, otherwise the co-ordinates would
not be locally flat in r = 0. Denoting R = 6k we get:

ds2 = (dx0)2 − S(t)2
{

dr2

1 − kr2
+ r2(dθ2 + sin2 θ dϕ2)

}
. (9.19)

By a co-ordinate transformation r → r̃ we may always make k equal to
0, 1 or − 1. Henceforth we restrict ourselves to k = 0, ±1. Robertson and
Walker have shown in 1936 that (9.19) is the most general metric of a space-
time whose subspaces t = constant are homogeneous and isotropic. Therefore
(9.19) is called the Robertson-Walker metric.

By means of symmetry arguments we have succeeded to find the metric up
to an unknown scale factor S(t). The scale factor is determined by the field
equations. Before we enter into that we discuss the structure of the spaces
defined by (9.19). According to (3.7) the spatial metric is given by:

dl2 = S2

{
dr2

1 − kr2
+ r2(dθ2 + sin2 θ dϕ2)

}
. (9.20)

It is important to realise that because of the homogeneity all points in the
spaces defined by (9.20) are equivalent, and that the origin r = 0 may chosen
wherever we like. For k = 0 the geometry is Euclidean and the space is flat
– a homogeneous, isotropic and flat universe. For k = ±1 space is no longer
flat and it is useful to make a transformation:

dr2

1 − kr2
≡ dχ2 , (9.21)



9.3 Metric and spatial structure 179

which integrates to

r =

{
sin χ (k = +1) ;

sinhχ (k = −1) .
(9.22)

As long as one moves on a surface r = constant one does not notice anything
out of the ordinary, because if we take dr = 0 in (9.20) we obtain the usual
geometry of the surface of a sphere. The surface (2-volume) O of such a sphere
is 4πr2S2. Exercise 9.6 illustrates how we may use that to measure χ and r.
We may also construct a θ, ϕ-grid on the sphere as usual.

Spherical universe with positive curvature

Things are different when the radial direction r comes into play. For k = +1
we have:

dl2 = S2
{

dχ2 + sin2χ (dθ2 + sin2 θ dϕ2)
}

. (9.23)

We may visualise this universe as the boundary of a 4-dimensional sphere of
radius S embedded in a 4-dimensional Euclidean space. The boundary of such
a 4-sphere may be parametrized as follows (see exercise):

x = S sin χ sin θ cos ϕ

y = S sinχ sin θ sin ϕ

z = S sinχ cos θ

w = S cos χ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

0 ≤ χ ≤ π ;

0 ≤ θ ≤ π ;

0 ≤ ϕ ≤ 2π .

(9.24)

The advantage of the χ-co-ordinate is that it is monotonous, contrary to r:
if k = 1, r runs from 0 to 1 and then back again to 0 (see exercise 13.2).
The space (9.24) has no boundary and in the exercises it is shown that its
3-volume is finite. This is called a closed universe. Note that the embedding
space has no physical reality. The fourth (radial) dimension from the origin of
the embedding space towards the boundary of the sphere and beyond does not
exist: we can only move within the boundary, in the space defined by (9.24),
and have no notion of what is lurking outside. There is no outside.

Hyperbolic universe with negative curvature

For k = −1 we have:

dl2 = S2
{

dχ2 + sinh2χ (dθ2 + sin2 θ dϕ2)
}

. (9.25)

There is now no natural limit to r; both r and χ run from 0 to ∞. This space
is much harder to visualize. The closest analogon is a saddle surface in R3.
However, in a flat R3 there exists no 2-surface without boundary and with a
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constant negative curvature.7 And in a flat R4 there exists no 3-surface with
a constant negative curvature. The space (9.25) also has no boundary, and an
exercise shows that its 3-volume is infinite, as in the case of k = 0. This is
called an open universe (k = 0, −1).

Exercise 9.3: Prove (9.16).

Hint: according to (3.7) the metric of the subspace t = constant and S = 1 is
d�2 = e2λdr2+r2dΩ2. But that is also the metric of the subspace t = constant
of the Schwarzschild metric (4.2). Therefore we calculate R = Ri

i of that 3D
space. It is not sufficient to restrict the indices α, β in (4.19) to 1, 2, 3: relation
(2.57) shows that we also should set to zero all Γµ

αβ with one or more zero
indices. According to § 4.1 these are Γ0

10, Γ0
01 and Γ1

00, and these can put
to zero by taking ν = constant. Then R0

0 = g0µRµ0 = g00R00 = 0 as well
according to (4.15).

Exercise 9.4: Prove that (9.24) is a space with metric (9.23) and that (9.24)
is the boundary of a 4-sphere with radius S in an Euclidean R4.

Hint: (9.24) should be a sphere (x2+y2+z2+w2 = S2) embedded in Euclidean
space, that is dl2 ≡ dx2 + dy2 + dz2 + dw2 = (9.23).

Exercise 9.5: Prove that for k = +1 the 3-volume of space is finite and equal
to 2π2S3.

Hint: From (9.23):
√

g dχdθdϕ = S3 sin2χ sin θ · dχdθdϕ (exercise 4.4).

Exercise 9.6: Consider a sphere with radius r = sin(h)χ around the origin.
Calculate the 2-volume of the boundary (the surface) and the length of the
radius. Prove that

surface sphere
4π (length radius)2

=

{
(sin χ/χ)2 < 1 (k = +1) ;

(sinh χ/χ)2 > 1 (k = −1) .
(9.26)

Hint: Take for example k = +1; dχ = 0 in (9.23) → metric of the spherical
boundary: dl2 = S2 sin2χ (dθ2 + sin2 θ dϕ2) → √

g dθdϕ = S2 sin2 χ sin θ ·
dθdϕ, then integrate. Length along χ : dl = Sdχ

(
dθ = dϕ = 0 in (9.23)

)
.

7 Stillwell, J.: 1992, Geometry of Surfaces, Springer-Verlag.
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9.4 Equations of motion

The derivation of the equations of motion is quite a bit of work: we have
to repeat the entire derivation of §§ 4.1 and 4.2 for the Robertson-Walker
metric. However, we shall pass over many details. The starting point is the
calculation of the Christoffel symbols. To this end we write down the equation
for an arbitrary geodesic with the help of variational calculus, see (2.36) and
(9.19): δ

∫
Ldp = 0, where L is given by:

L = gαβ ẋαẋβ

= (ẋ0)2 − S2ṙ2

1 − kr2
− S2r2θ̇2 − S2r2 sin2 θ ϕ̇2 , (9.27)

with ˙ = d/dp.8 Note that the co-ordinates x0 = ct, x1 = r, x2 = θ and
x3 = ϕ are functions of the parameter p. The scale factor S depends on t, i.e.
on x0. All x0-dependence of L is in S, and S′ ≡ dS/dx0. We elaborate the
Euler-Lagrange equations (2.37) for x0: ∂L/∂x0 = (∂L/∂ẋ0)˙ :

− 2SS′
(

ṙ2

1 − kr2
+ r2θ̇2 + r2 sin2 θ ϕ̇2

)
= (2ẋ0)˙ . (9.28)

After some rearranging:

ẍ0 +
SS′

1 − kr2
ṙ2 + SS′r2θ̇2 + SS′r2 sin2 θ ϕ̇2 = 0 . (9.29)

We compare this to (2.34) so that we may read Γ0
αβ from the equation (num-

bering: 1 = r, 2 = θ, 3 = ϕ):

Γ0
11 =

SS′

1 − kr2
; Γ0

22 = SS′r2 ; Γ0
33 = SS′r2 sin2 θ , (9.30)

and all other Γ0
αβ are zero. An exercise invites the reader to prove that

Γν
0ν =

3S′

S
; Γα

00 = 0 ; Γ0
ik = − S′

S
gik . (9.31)

According to (9.19) the metric tensor gαβ is

g00 = 1 ; g11 = − S2

1 − kr2
;

g22 = −S2r2 ; g33 = −S2r2 sin2 θ .

⎫⎪⎬
⎪⎭ (9.32)

8 Our notation is not very consistent. Sometimes ˙ stands for d/dp and sometimes
for ∂/∂t. Here we are forced to distinguish d/dp (denoted by ˙ ) and ∂/∂t (denoted
as ′ = d/dx0). Later we switch again to Ṡ = dS/dt.
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The (long) technicalities of the computation of Rµν are left aside, and we
mention only the final result

R00 =
3S′′

S
; R0i = 0 ;

Rik =
SS′′ + 2(S′)2 + 2k

S2
gik ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(9.33)

with ′ = d/dx0. Furthermore (see exercise)

G00 = −
3
{
(S′)2 + k

}
S2

. (9.34)

We have expressed Rik and Γ0
ik in terms of gik where possible because that

will be useful later.

Next we consider the stress-energy tensor Tµν . The universe is filled ho-
mogeneously with a mixture of matter (galaxies) and radiation (the CMB).
The bulk velocity of that mixture with respect to the Hubble flow is zero:
uµ = (1, 0, 0, 0) → uµ = gµνuν = gµ0 = 0 for µ = 1, 2, 3 and 1 for
µ = 0 → uµ = uµ. With (3.57) we obtain:

T00 = ρ ; T0i = 0 ; Tik = − p

c2
gik . (9.35)

We conclude from (3.58) that G00 + Λ = − (8πG/c2) · T00, or:(
S′

S

)2

=
8πGρ

3c2
+

Λ

3
− k

S2
. (9.36)

This is the equation of motion for S, first derived by Friedmann in 1922 for
the special case that the cosmological constant Λ is zero.

Adiabatic expansion

There is still information in Tµν
:ν = 0, but only in T 0ν

:ν = 0. From (2.51):

T 0ν
:ν = T 0ν

,ν + Γ0
νσT νσ + Γν

σνT 0σ = 0 . (9.37)

Now T ik = giλgkµ Tλµ = gilgkm Tlm = −(p/c2)gik, and is straightforward to
see that T 00 = T00 = ρ, and T 0i = 0. This simplifies (9.37) to:

0 = T 00
,0 + Γν

0νT 00 + Γ0
ikT ik

= ρ′ +
3S′

S
ρ +

S′

S

p

c2
gik gik

= ρ′ +
3S′

S
ρ +

3S′

S

p

c2
. (9.38)
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Here we have made use first of Γ0
0α = 0, then of ρ,0 = ρ′ and finally of (9.31).

On multiplying (9.38) with c2S3 we get

(ρc2S3)′ + p (S3)′ = 0 . (9.39)

This equation says that the gas in a volume V ∝ S3 expands adiabatically :
dQ/dt ≡ dU/dt + pdV/dt = 0 with U ≡ ρc2V .

The role of the pressure

Equations (9.36) and (9.39) determine the evolution of the universe once we
know the equation of state p(ρ). This is the subject of the next chapter.
Note that (9.36) and (9.39) may be combined into the following relation (see
exercise):

S′′

S
= − 4πG

3c2

(
ρ +

3p

c2

)
+

Λ

3
. (9.40)

This equation carries a few important messages. We take Λ = 0 first, and
deal with Λ �= 0 in the next section. In this case S′′ < 0, i.e. S′ decreases.
In other words, the expansion of the universe is slowing down. The classical
explanation is that this is gravity at work, which is constantly trying to pull
the matter together. Another implication is that the expansion must have been
faster in the past. Perhaps more astounding is that pressure also acts to reduce
the expansion. The intuitive idea that pressure should accelerate expansion is
apparently not correct. The explanation is that a pressure gradient gives rise to
a force, like between the inside and the outside of a balloon. But the universe
is homogeneous and there are no pressure gradients. To continue in the spirit
of the metaphor, we don’t live inside the balloon but on the homogeneous
surface (the interior of the ‘balloon’ does not exist). What remains is that
pressure is a form of potential energy and acts as a source of gravity if it is
sufficiently large, p ∼ ρc2. A similar thing happened in the case of the TOV
equation, § 5.3.

9.5 The cosmological constant

Historically, Einstein introduced the cosmological constant Λ because it was
a term that logically should appear in the field equations, and it allowed the
existence of a static, zero-pressure spherical universe:

S = Λ−1/2 = c (4πGρ)−1/2 ; k = +1 . (9.41)

Remember – this was before it was discovered that the universe expands.
The effect of a positive cosmological constant in eq. (9.40) is to increase the
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expansion rate. Nowadays we believe we know that ΩΛ ≡ Λc2/3H2
0 	 0.7 and

that the expansion of the universe is actually accelerating. The cosmological
constant is a property of the vacuum since Λ remains in eqs. (9.36) and (9.40)
after ρ and p have been set to zero. It is possible to explain the term Λgµν in
(3.58) in terms of a stress-energy tensor associated with the vacuum. Following
the literature we endow it with a constant energy density ρvc

2 of unknown,
probably quantummechanical origin.9 In special relativity, the stress-energy
tensor in the local rest-frame of a fluid is10

Tµν =
1
c2

⎛
⎜⎜⎝

ρvc
2 ∅

pv

pv

∅ pv

⎞
⎟⎟⎠ . (9.42)

We have replaced ρ → ρv and p → pv, in anticipation of (9.42) being the Tµν of
the vacuum. Now comes the key observation: the vacuum is physically identical
in all inertial frames, so that (9.42) must be the same in all inertial frames,
and it must be Lorentz-invariant. This is only possible if Tµν = const · ηµν ,
which implies that

Tµν
v = ρvη

µν ; pv = −ρvc
2 . (9.43)

A negative pressure is formally in agreement with energy conservation (9.39):
dU/dt + pdV/dt ≡ dρvc

2V/dt + (−ρvc
2)dV/dt = 0 as ρv is constant. The

principle of general covariance suggests that in GR we should take

Tµν
v = ρvg

µν . (9.44)

Next, following eq. (3.59), we write the field equation (3.42) as

Gµν = − 8πG

c2

(
Tµν

v + Tµν
m

)
, (9.45)

where the index m stands for matter. After insertion of (9.44) we recover the
field equation (3.58) with the Λ-term, and

Λ =
8πGρv

c2
, or ΩΛ ≡ Λc2

3H2
0

=
ρv

ρc
. (9.46)

The parameters ΩΛ and Ωm ≡ ρ/ρc will play an important role in the next
chapters.

We handle eq. (9.40) in the same spirit: omit the term Λ/3 and split the
ρ + 3p/c3 term in a vacuum part and a matter part. The former equals again
Λ/3:

9 Carroll, S.M. et al., A.R.A.A. 30 (1992) 499.
10 Set uµ = (1, 0, 0, 0) and gµν = ηµν in (3.57).
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− 4πG

3c2

(
ρv − 3ρv

)
= +

8πGρv

3c2
≡ Λ

3
. (9.47)

This also demonstrates that the anti-gravity generated by the negative pres-
sure outweighs the gravity associated with the vacuum density ρv.

In summary, we assign to the vacuum a constant energy density ρvc
2 of

unknown origin, referred to as dark energy. Formal arguments such as Lorentz
invariance force us to assign to it a negative pressure −ρvc

2 as well. This is
then equivalent with the Λ-term in eq. (9.36). The anti-gravity generated by
the negative pressure makes the expansion of the universe accelerate. Obser-
vations suggest that ρv is a little less than ρc. The ultimate explanation of Λ
and ρv must come from a theory of quantum gravity.

9.6 Geodesics

The geodesics of the Robertson-Walker metric are simple in the sense that they
are all effectively radial geodesics. Given a geodesic, spatial homogeneity per-
mits us to move the origin to a point on the geodesic. Seen from this new origin
the geodesic must be a radial geodesic (dθ = dϕ = 0), on account of symmetry.
The situation is therefore simpler than in the case of the Schwarzschild metric.
All optical observations, for example, may be analysed with radial null geo-
desics, and these are simple: ds2 = 0 in (9.19) → dx0 = ±S(1 − kr2)−1/2dr
(§ 11.1). The only non-trivial material geodesics are those having a nonzero
initial velocity, for example a test mass fired into space, see Fig. 9.6 and ex-
ercise 9.9. The outcome may be understood right away: the test mass does
not reach spatial infinity, but rather a constant co-ordinate distance r0. What
happens is that the speed of the test mass decreases with respect to the local
Hubble flow, and after a (formally infinite) time it finds itself at rest in the
Hubble flow. One of the consequences is that the peculiar motion of a galaxy
superposed on the Hubble flow is generally damped. This is just a manifes-
tation of adiabatic cooling, which we already encountered in connection with
eq. (9.39). It explains why the Hubble flow is cold.

Exercise 9.7: Prove (9.31) and (9.34).

Hint: (9.32) → −g = S6r4 sin4 θ/(1 − kr2), then (2.33); Γi
00 requires the

other geodesic equations from ∂L/∂xi = (∂L/∂ẋi)˙. According to (2.34) it
comes down to showing that there are no terms ∝ (ẋ0)2; Γ0

ik from (9.30)
and (9.32); G00 from (2.60), and R = gµνRνµ = R00 + gikRki. Then (9.33).
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Fig. 9.6. Star wars. Under the pressure of mounting political tension the Upper
Master of galaxy A decides to fire a bullet K to an unfriendly neighbour with
initial velocity β = v0/c. The bullet (think of a jet) moves along a radial geodesic
r(τ), x0(τ). Due to the expansion, the bullet reaches a finite co-ordinate distance
r0. The computation of exercise 9.9 is only indicative as it does not allow for the
gravitational attraction of A.

Exercise 9.8: Prove (9.40).

Hint: First multiply (9.36) by S2. Write ρS2 = ρS3/S, in anticipation of the
substitution of (9.39).

Exercise 9.9: Test mass K in Fig. 9.6 moves on a material geodesic in the
Robertson-Walker metric. Show that

dχ

dt
≡ 1√

1 − kr2

dr

dt
=

λc

S
√

S2 + λ2
, (9.48)

with λ = γβS0 and β = v0/c, v0 = initial velocity of K and γ = (1−β2)−1/2.

Hint: Nasty problem. Since the Robertson-Walker metric depends on time,
u0 is not a constant of the motion, as it was in the Schwarzschild metric.
The constants of the motion are θ and ϕ. The equation for x0 is (9.29) with
dθ = dϕ = 0. To obtain the second equation it is easiest to ‘divide’ (9.19) by
ds2 as we did in (4.35):

ẍ0 +
SS′ṙ2

1 − kr2
= 0 ; (9.49)

(ẋ0)2 − S2ṙ2

1 − kr2
= 1 , (9.50)
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with ˙ = d/ds and ′ = d/dx0. In this problem the proper time plays its usual
role again. Eliminate ṙ2/(1 − kr2):

ẍ0 + (S′/S){(ẋ0)2 − 1} = 0 . (9.51)

Multiply with S2ẋ0 and use that S′ẋ0 = Ṡ. The result may be integrated to
S2(ẋ0)2 − S2 = λ2 = integration constant:

ẋ0 =
√

S2 + λ2 /S . (9.52)

Initial condition: at t = t0 we have S = S0 and according to (1.6) ẋ0 ≡
dt/dτ = (1− β2)−1/2 with β = v0/c → λ = γβS0. Substitute (9.52) in (9.50):

(1 − kr2)−1/2 ṙ = λ/S2 . (9.53)

Finally, dr/dt = cṙ/ẋ0. Eq. (9.48) can be integrated once S(t) is known (ex-
ercise 11.4). It is easy to see that for S ∝ tα and k = 0 the test mass will
travel a finite co-ordinate distance if α > 1

2 .



Worlds in collision. A spectacular merger in progress in NGC 4676, at a distance of
92 Mpc. Analysis shows that we are seeing two spirals some 160 Myr after closest
encounter. Tidal interaction created long tails that contain many associations of young
and hot (blue) stars. The pair will eventually merge into a single elliptical galaxy. The
horizontal image size is about 2′. A similar merger might happen when our galaxy
hits its neighbour M31, a few billion years from now. Image taken by the Advanced
Camera for Surveys on the HST in April 2002. Credit: NASA, H. Ford et al., and the
ACS Science team.
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The Evolution of the Universe

In the previous chapter we learned that GR opens completely new possibilities
for the spatial structure of the universe, even if we restrict ourselves to ho-
mogeneous isotropic spaces. Space becomes a dynamic entity whose topology
and geometry depend on the matter it contains. This is a major conceptual
advance over the Newtonian idea of an absolute, flat and infinite space. This
chapter tells the story of the Friedmann-Robertson-Walker (FRW) model.
That is, the homogeneous isotropic universe with a Robertson-Walker met-
ric whose evolution is determined by the Friedmann equation (9.36). In 1927
Lemâıtre proved that Friedmann’s solution implies a linear relation between
distance and redshift. The discovery of the expansion of the universe in the
1920s by Slipher and Hubble did not come out of the blue, but had been an-
ticipated by the theoretical developments of the time. During the second half
of the 20th century it was realised that a FRW universe must have had a hot
start, of which the matter and the cosmic microwave background (CMB) are
ancient relics. More than anything else, the discovery of this CMB by Penzias
and Wilson in 1965 has changed the face of cosmology from a speculative
backyard in the 1950s into the quantitative science it is today.

10.1 Equation of state

Equations (9.36) and (9.39) determine the evolution of the universe as soon
as we know the equation of state p(ρ), or ρ as function of S. In cosmology
it is customary to group all relativistic particles under the name radiation,
regardless of their mass, and to reserve the term matter for all non-relativistic
particles. The reason is that these two groups contribute in rather different
ways to the dynamics of the universe.1 The density ρ in (9.36) and (9.39)
1 There are now strong indications that neutrinos have a small mass. The WMAP

data indicate that Ων < 0.015, implying that while some of the neutrinos may
actually be ‘matter’ now, they are likely to be all relativistic at the beginning of
the matter era. For that reason the energy density of the neutrino background
has been added to the radiation density in (9.9).
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Table 10.1. Pressure and density in the universe

Matter Radiation
(εm � εr) (εm 	 εr)

p = pm + pr 0 1
3
εr

ρ = (εm + εr)/c2 εm/c2 εr/c2

S-dependence εmS3 = const εrS
4 = const

should be interpreted as ε/c2, where ε = total energy density, including the
rest mass contribution, and p represents the total pressure. As long as the
temperature is sufficiently low, m0c

2 � κT , the total energy of a particle
with mass hardly exceeds m0c

2. Such a non-relativistic particle has a constant
contribution to ε. In the early universe, however, the temperature is very high
and m0c

2 may be much smaller than κT . In that case the rest mass of the
particle is effectively zero and it behaves like a photon, whose wavelength
scales ∝ S (the proof is given in § 11.1). The contribution of such a particle
to ε is ∝ S−1. Since the number of particles in a comoving volume V ∝ S3

remains constant, we find that the energy density is ∝ S−3 for matter and
∝ S−4 for radiation.

A consequence of this matter/radiation definition is that particles with
m0 �= 0 switch gender during the evolution of the universe, from ‘radiation’ to
‘matter’, first the heavier particles, subsequently followed by the lighter ones,
since the temperature decreases so drastically. It turns out that the evolution
of the universe can be described by two limiting cases: (1) the recent history of
the universe, during which εm � εr so that the evolution is entirely determined
by the matter, and (2) the hot early universe where εm � εr and the radiation
determines the evolution. In the former case the pressure is zero, because
p = pm + pr ∼ nκT + εr � εm + εr 	 εm 	 ρc2 → p � ρc2 → p 	 0,
since we know that p is only relevant when p ∼ ρc2. For particles of zero mass
p = ε/3 holds generally, see Appendix D. In this way we arrive at the relations
in Table 10.1.

Exercise 10.1: Show that εmS3 = constant and εrS
4 = constant from (9.39).

Hint: Matter: trivial. Radiation: (εrS3)′ + 1
3εr(S3)′ = 0 → (εrS4)′ = 0.
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10.2 The matter era

On comparing (9.3) and (9.9) we see that the matter energy density in the
universe is about a factor 3000 larger than the energy density in radiation.
This imbalance will remain in the future as S increases, because εm ∝ S−3,
while εr ∝ S−4. It is only in the early universe that εr > εm. During most of its
life the universe evolves according to the limiting case ‘matter’. The equations
for this so-called matter era follow from (9.36), (9.40) and Table 10.1. We also
revert to the notation ˙ = d/dt:

(
Ṡ

S

)2

=
8πGρ

3
+

Λc2

3
− kc2

S2
; (10.1)

S̈

S
= − 4πGρ

3
+

Λc2

3
; (10.2)

ρS3 = ρ0S0
3 . (10.3)

Here and everywhere else the index 0 indicates the value of a quantity at
the present epoch t = t0; ρ is the density of matter (the index m has been
dropped). The first step is to rewrite (10.1) in a seemingly complicated way
for t = t0:

1 = Ωm + ΩΛ + Ωk . (10.4)

The constants Ωm, ΩΛ and Ωk are defined as:

Ωm =
8πGρ0

3H2
0

=
ρ0

ρc
;

ΩΛ =
Λc2

3H2
0

=
ρv

ρc
;

Ωk = − k

(
c

H0S0

)2

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10.5)

and

H0 ≡
(

Ṡ

S

)
0

=
Ṡ0

S0
; ρc =

3H2
0

8πG
. (10.6)

That (10.4) is the same as (10.1) at t = t0 is just a matter of substitution. The
parameters Ωm, ΩΛ and Ωk indicate the relative importance of the density,
the cosmological constant, and the curvature of space in the evolution of
the universe at the present epoch. We have already met the parameters Ωm

and ΩΛ and the critical density ρc in the previous chapter. The proof that
H0 defined in (10.6) is really the Hubble constant is given in § 11.3. Since
sign(Ωm + ΩΛ − 1) = sign(k), we arrive at an important conclusion:
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closed universe (k = +1) ↔ Ωm + ΩΛ > 1 ;

flat universe (k = 0) ↔ Ωm + ΩΛ = 1 ;

open universe (k = −1) ↔ Ωm + ΩΛ < 1 .

⎫⎪⎪⎬
⎪⎪⎭ (10.7)

The spatial structure of an FRW universe is fixed by the matter density,
the cosmological constant and the Hubble constant. And since Ωm + ΩΛ =
1.02± 0.02, see Table 9.2, our universe is very likely to have a flat geometry.

After substitution of (10.3), we may cast the evolution equation for the
scale factor (10.1) in a suitable dimensionless form:

u̇2 = H2
0

(
Ωmu−1 + ΩΛu2 + Ωk

)
, with u = S/S0 . (10.8)

We now discuss the evolution of FRW universes as given by (10.8). At the
present epoch we have Ṡ > 0, hence u̇ > 0 in u = 1. Note that u̇ can only
change sign if the right hand side of (10.8) becomes zero. If we move into the
past, i.e. smaller u, the right hand side of eq. (10.8) becomes larger and u̇
increases, provided ΩΛ is not too large.2 It follows that u will reach zero in
a finite time. We arrive at a second important conclusion: the expansion of
FRW universes started a finite time ago from a singularity. The density and
pressure must have been extremely high at that time. This is called the Big
Bang. It turns out that isotropy and εm � εr are no essential ingredients. The
expansion must have started from a singularity.

FRW models with zero Λ

We now consider the future evolution of FRW models, and take ΩΛ = 0 first.
For ΩΛ = 0 we have

|Ωm − 1|1/2 = |Ωk|1/2 =
c

H0S0
, (10.9)

provided Ωm �= 1, and

u̇2 = H2
0

(
Ωmu−1 + 1 − Ωm

)
, u = S/S0 . (10.10)

At the present epoch u̇ > 0 in u = 1. For Ωm ≤ 1 the right hand side of
(10.10) is positive, so that Ṡ is always positive. The expansion will continue

2 A singularity may not occur if ΩΛ > 1. For a classification of universe models as
a function of Ωm and ΩΛ we refer to Peacock (1999) § 3.2. The word singularity
should not be taken too literally. Quantum gravity will probably prevent it, and
even during the earliest phases of the Big Bang the universe never was a ‘point’,
see Ch. 13.
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hyperbolic (k = -1)
Wm = 0.5

flat (k = 0)
Wm = 1

spherical (k = 1)
Wm = 2

WL 0

now

H0
-1

S
 / 

S
0

1

2

3

4

1 2 3 4 5 6 70
time

Big Bang Big Crunch

Big Emptiness

Fig. 10.1. Three solutions of eq. (10.10): an open, a flat and a closed FRW universe
with Λ = 0, tuned to the same size and expansion rate at the present epoch t0,
arbitrarily located at t = 1. Time is in units of H0

−1.

forever. The density is too low and the associated gravity not strong enough
to stop it. For large S the expansion rate approaches

u̇ →
{0 Ωm = 1 ;

H0

√
1 − Ωm Ωm < 1 ,

(10.11)

or, in terms of S: Ṡ → 0, c for k = 0, −1. When Ωm > 1 the right hand side of
(10.10) may become zero. A horizontal asymptote u → const. is not possible
because (10.2) requires that S̈ < 0. In other words, Ṡ(t) must decrease all
the time. Hence, for Ωm > 1, u will reach a maximum u = Ωm/(Ωm − 1) >
1 after which a contraction follows; u(t) is symmetric with respect to the
maximum (why?). The gravity generated by the matter is sufficient to stop
the expansion, after which the universe begins to contract again, and ‘the
movie is shown in reverse order’. The contraction steadily accelerates and
continues until space degenerates formally into a point. This is called the Big
Crunch. Fig. 10.1 shows the evolution of three FRW universes with ΩΛ = 0.

Eq. (10.10) has a simple solution for Ωm = 1. We have u1/2u̇ = H0 →
u = const · t2/3 :

S

S0
=

(
3
2H0t

)2/3

⇒

t0 = 2
3H−1

0 	 6.5h−1 Gyr

⎫⎪⎪⎬
⎪⎪⎭ for Ωm = 1 and ΩΛ = 0 . (10.12)
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Table 10.2. The age of a FRW universe as a function of its size.

S/S0 H0t

Ωm 0.5 1 2 0.3
ΩΛ 0 0 0 0.7

0.01 9.4 · 10−4 6.7 · 10−4 4.7 · 10−4 1.2 · 10−3

0.02 2.7 · 10−4 1.9 · 10−3 1.3 · 10−3 3.4 · 10−3

0.05 0.010 7.5 · 10−3 5.3 · 10−3 0.014
0.1 0.029 0.021 0.015 0.038
0.2 0.080 0.060 0.043 0.11
0.5 0.29 0.24 0.18 0.41
1 0.75 0.67 0.57 0.96
2 1.8 1.9 3.1 1.7
5 5.6 7.5 − a 2.8

a The maximum size S/S0 of this closed universe is 2.

This model serves as a kind of reference model in cosmology. The t2/3-
dependence can be understood with the help of a classical argument: matter
homogeneously filling a flat space under its own gravity moves exactly in the
same manner, see exercise. Given that h = 0.71, the age t0 of this universe is
about 9 Gyr, which is too young. The radiation era prior to the matter era
lasted only ∼< 105 yr, and cannot significantly affect the value of t0. It is pos-
sible to increase t0 by taking Ωm < 1, but in order to attain a reasonable age,
say t0 ∼ 12.5 Gyr, Ωm must be ≤ 0.1, which is excluded by the observations.

FRW models with non-zero Λ

The solution of this age problem came after the WMAP mission had estab-
lished the parameters of our universe: (Ωm, ΩΛ) 	 (0.3, 0.7). The cosmological
constant produces an extra acceleration, and a universe with Λ > 0 expands
forever (unless Ωm is large), and is usually older. For large u we infer from
(10.8) that u̇ 	 H0

√
ΩΛ u → u ∝ exp(H0

√
ΩΛ t). The expansion is exponen-

tial. The turning point where the expansion rate changes from decreasing to
increasing can be obtained from (10.2) in dimensionless form:

ü = H2
0

(
− 1

2Ωmu−2 + ΩΛu
)

, (10.13)

and ü = 0 for u = (Ωm/2ΩΛ)1/3 ∼ 0.6. Such an (Ωm, ΩΛ) = (0.3, 0.7)
universe is now forever in a state of accelerating expansion. The time evolution
follows from (10.8): du/dt = H0(· · ·)1/2 or H0dt = (· · ·)−1/2du :

H0t =
∫ S/S0

0

(
Ωmu−1 + ΩΛu2 + Ωk

)−1/2

du . (10.14)
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( Wm, WL ) = (0.3, 0.7)
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Fig. 10.2. The evolution of a (Ωm, ΩΛ) � (0.3, 0.7) universe, from numerical inte-
gration of (10.14). B is the turning point where S̈ = 0. The model is compared with
the (Ωm, ΩΛ) = (1, 0) reference model, and both are scaled to the same size and
expansion rate at the present epoch, arbitrarily located at t = 1. Time is in units of
H0

−1.

Some values are given in Table 10.2, and Fig. 10.2 shows the (0.3, 0.7) solution
together with the (1, 0) reference model. The (0.3, 0.7) universe is older than
the (1, 0) model because u begins convex but turns concave later on. The age
t0 of this universe is

H0t0 =
∫ 1

0

(
Ωmu−1 + ΩΛu2 + Ωk

)−1/2

du

	 2
3

(
0.7Ωm − 0.3ΩΛ + 0.3

)−0.3

. (10.15)

The approximate expression holds for 0.1∼< Ωm ∼< 1 and |ΩΛ| ∼< 1 (Peacock,
1999). Taking the WMAP parameters, the age of our (0.27, 0.73) universe
would be 0.99H−1

0 	 13.6 Gyr, almost exactly a Hubble time, in fair agree-
ment with other age indicators such as globular clusters (12 ± 1 Gyr), and
nuclear dating (15.6 ± 4.6 Gyr).3 It seems therefore that we live in a flat
universe that is forever flying apart, heading faster and faster towards Big
Emptiness. The driving force behind this cosmic inflation, the second in the
life of the universe,4 is the anti-gravity associated with an ill-understood vac-

3 Reid, I.N., A. J. 114 (1997) 116; Cowan, J.J. et al., Ap. J. 521 (1999) 194.
4 The first inflation phase occurred right after t = 0, see Ch. 13.
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uum energy (the cosmological constant Λ). We refer to Adams and Laughlin
(1999) for an eloquent account of what future of our universe may look like.

Exercise 10.2: Prove that the age of an ΩΛ = 0 universe cannot be larger
than H−1

0 .

Hint: (10.10) → u̇ ≥ H0 for u ≤ 1 → dt ≤ du/H0 → ∫ t0
0 dt ≤ H−1

0 ∫1
0 du,

etc. For ΩΛ �= 0 the argument no longer applies.

Exercise 10.3: Show that an observer in an FRW universe with ΩΛ �= 0
now, will measure (Ωm, ΩΛ, Ωk) 	 (1, 0, 0) at early times, and 	 (0, 1, 0) at
late times.

Hint: The values of the Ω’s in (10.4) depend on time. Write out (10.1) for an
arbitrary time:

1 =
8πGρ

3H2
+

Λc2

3H2
− k

(
c

HS

)2

. (10.16)

For S small (10.1) says H2 ≡ (Ṡ/S)2 ∝ S−3, i.e. second and third term in
(10.16) approach zero. For large S we have H = Ṡ/S = constant, i.e. first and
third term approach zero.

Exercise 10.4: Show that eq. (10.10) describes the dynamics of self-gravitating
matter homogeneously filling an infinite flat space.

Hint: Choose an origin O and a point M at distance S. Acceleration of M
with respect to O is S̈ = −G(4πρS3/3)S−2 (Newton’s law). Take ρS3 = ρ0S

3
0

and S/S0 = u → 2ü = −H2
0Ωmu−2; multiply with u̇ and integrate:

u̇2 = H2
0 (Ωmu−1 + const.). Integration constant from u̇ = H0 in u = 1.

Weak point: all mass outside the sphere with radius S is ignored.

Exercise 10.5: Conclude from (10.4) and (10.5) that S0 = (c/H0) · |Ωm +
ΩΛ − 1|−1/2. Is S0 a measurable quantity? Why is that no longer the case
when Ωm + ΩΛ = 1, in a flat universe?

Hint: For the second question, see (9.19): for k = 0 there is a redundancy:
S and r appear only in the combination Sr, and there is no room for two
independent parameters S and r.
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Exercise 10.6: Show that ρ − ρc cannot change sign, so that an FRW uni-
verse cannot change type. Restrict yourself to Λ = 0.

Hint: Follows directly from the equation

(ρ − ρc)˙ = −2H(ρ − ρc) . (10.17)

Proof: (ρ − ρc)˙ = ρ̇ − (3H2/8πG)˙ = ρ̇ − (6H/8πG)Ḣ ; write (9.38) as ρ̇ =
−3H(ρ + p/c2), and Ḣ = (Ṡ/S)˙ = (S̈S − Ṡ2)/S2 = −H2 + S̈/S, then (9.40).
What if Λ �= 0?

10.3 The radiation era

In the matter era the energy density εm of matter is much larger than the
radiation energy density. But since εm ∝ S−3 and εr ∝ S−4, things must have
the other way around in the early universe. During this so-called radiation
era the universe was an almost perfectly homogeneous, rapidly expanding
and cooling fireball. We shall now study this early hot phase of the universe
which lasted only some 105 yr. We write

εm = εm0

(
S0

S

)3

; εr = εr0

(
S0

S

)4

. (10.18)

And εr = εm for a ≡ S/S0 = εr0/εm0. From (9.3) and (9.9):

a ≡
(

S

S0

)
rad→mat

=
εr0
εm0

=
εr0

Ωmρcc2

= 4.14 × 10−5 (Ωmh2)−1 . (10.19)

This parameter a determines the evolution of the universe in the radiation
era. For Ωm 	 0.27 and h 	 0.71 we have a 	 3.04 × 10−4. The transition
from a radiation-dominated to a matter-dominated universe took place when
the universe was a factor S0/S = (1/a) ∼ 3000 smaller than today. Because
εr is both ∝ S−4 and ∝ T 4, we have T ∝ S−1, or:

Tr = Tr0
S0

S
. (10.20)

This presupposes that photons with a Planck distribution will keep a Planck
distribution as the scale factor S changes (exercise 10.7). If that were not
the case the interpretation of the CMB would be rather problematic. For
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Fig. 10.3. The thermal history of the universe as a function of the scale factor
ratio S0/S. Top panel: the temperature of matter and radiation; bottom panel: the
energy densities.

S0/S ∼ 103 the temperature of the CMB is Tr ∼ 2.73 × 103 ∼ 3000 K, which
is about the temperature at which hydrogen gets ionized.5 The ionization
of helium requires a higher temperature and a larger value of S0/S. Ionized
matter and radiation are in thermal equilibrium through frequent Thomson
scattering of photons on free electrons. We follow the development in forward

5 Collisional ionization requires T ∼ (1 − 2) × 104 K, but since there are 109

photons to every hydrogen atom photo-ionization is important. The ionization
temperature is now lower because at the same temperature there are more photons
in the tail of the Planck distribution than there are particles in the tail of the
Maxwell-Boltzmann distribution, see Peebles (1993) p. 165 ff.
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direction. When S0/S decreases below ∼ 1200 the plasma begins to recom-
bine (a strange term, because neutral atoms had never existed before), and
this process is completed around S0/S ∼ 103. 6 The photons experience a last
Thomson scattering, and the universe becomes transparent. The mean value
of S0/S at recombination is 1100.

The high degree of isotropy of the CMB allows us to draw an impor-
tant conclusion: the density fluctuations during the recombination must have
been equally small. Therefore we know for certain that the universe at that
time was practically homogeneously filled with hydrogen and helium. It was a
hot mixture of radiation and matter that expanded and cooled down. In the
next section we shall see that the existing tiny density fluctuations gradually
evolved, in the course of the matter era, into the present structure of the uni-
verse, dominated by galaxies.

Fig. 10.3 shows Tr, Tm, εr and εm as a function of S. Both εr and εm con-
tinue to scale as ∝ S−4 and ∝ S−4, until energy exchange between radiation
and matter begins to play a role in the very early universe.7 For S0/S ∼> 103

we have Tm = Tr. One might think that after the recombination the matter
temperature scales as Tm ∝ ρm

γ−1 ∝ (S−3)γ−1 ∝ S−2 (adiabatic expansion,
γ = 5/3). But in reality density fluctuations develop into mass concentra-
tions, each with its own, independent thermal evolution. Eventually, the first
generation of stars is born, marking the end of what is sometimes referred to
as the Dark Ages. These stars enrich, reheat and eventually re-ionize the gas,
probably in several stages. Around S0/S ∼ 7, when the universe was about
1 Gyr old, this re-ionization process had been completed.8

Time evolution

To investigate how S depends on time we note that at the beginning of the
matter era u = S/S0 � 1, so that eq. (10.8) reduces to u̇ = H0(Ωm/u)1/2.
There are no longer three types of universe k = 0,±1, but space is virtually
flat (even if it were not flat today) and the cosmological constant is effectively
zero, see also exercise 10.3. To describe the transition from radiation to matter
era we may omit the last two terms in (10.8):

(
Ṡ

S

)2

=
8πGρ

3
, (10.21)

and replace (10.3) with

6 The fractional ionisation freezes out at a value of ∼ 10−4.
7 This is a consequence of the definition of matter and radiation, § 10.1.
8 Loeb, A. and Barkana, R., A.R.A.A. 39 (2001) 19; Fukugita, M. and Kawasaki,

M., M.N.R.A.S. 343 (2003) L25; Wyithe, J.S.B. and Loeb, A., Nature 432 (2004)
194.
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Fig. 10.4. The evolution of the scale factor in the early universe, eq. (10.28). As the
radiation era gives way to the matter era, the gravity associated with the pressure
disappears and the expansion changes from ∝ τ1/2 to ∝ τ2/3 and slows down less
rapidly. For Ωm = 0.27 and h = 0.71 we have tm � 9.4 × 104 yr, and the matter
era begins at tmat � 0.59 tm, while recombination is at trec � 4 tm. Note that τ = 1
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−1, so that the figure is a huge magnification of the origin
of Figs. 10.1 and 10.2.

ρ =
εm0

c2

(
S0

S

)3

+
εr0
c2

(
S0

S

)4

. (10.22)

With u = S/S0 and definition (10.19) of a we get

u̇2 =
8πGεm0

3c2

(
1
u

+
a

u2

)
. (10.23)

We introduce the parameter tm :

tm =
2

3H0

(
a3

Ωm

)1/2

=
1.75 × 103

(Ωmh2)2
yr , (10.24)

which will turn out to be a measure of the age of the universe at the start of
the matter era. For the parameters of our universe we find tm 	 9.4× 104 yr.
Eq. (10.23) may now be written in terms of dimensionless variables:

(
dx

dτ

)2

=
4
9

(
1
x

+
1
x2

)
(10.25)

where
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x =
u

a
=

1
a

S

S0
, τ =

t

tm
. (10.26)

We may rearrange equation (10.25) as xdx/(1 + x)1/2 = 2
3dτ , to obtain∫ u/a

0

xdx√
1 + x

=
2τ

3
. (10.27)

The integral is simple after substitution of x = (1 + x) − 1 in the numerator:

τ = 2 + (1 + x)3/2 − 3(1 + x)1/2 . (10.28)

The solution is shown in Fig. 10.4. For large x we have τ 	 x3/2, while
τ 	 3x2/4 for small x :

x 	

⎧⎨
⎩

(2/
√

3) τ1/2 τ � 1 ;

τ2/3 τ � 1 .
(10.29)

The expansion begins as S ∝ t1/2 and changes to S ∝ t2/3 in the matter era.
It is often said that this means that the expansion accelerates, but of course
what really happens is that the expansion decelerates less rapidly because the
pressure becomes effectively zero in the matter era, and the associated gravity
disappears.

The age tmat of the universe at the start of the matter era follows from
the fact that u = a, i.e. x = 1, and τ = 2 −

√
2 	 0.59. And the age

trec at recombination when S0/S 	 1100 corresponds to x = (S/S0)/a 	
(1100a)−1 	 3 or τ 	 4 :

tmat 	 0.59tm 	 5.5 × 104 yr ;

trec 	 4tm 	 3.8 × 105 yr .

}
(10.30)

Equation (10.28) becomes invalid in the very early universe, for t∼< 10 s. The
reason is that the extremely high temperature renders some particles rela-
tivistic, which then qualify as radiation. This effectively increases the value
of εr0 and hence of a from (10.19). The electrons are the first to make the
switch, when Tr ∼> 6 × 109 K, for t∼< 10 s.

Exercise 10.7: Prove the following statements on the Planck distribution:

1. εr =
4σ

c
T 4 erg cm−3 ; (10.31)

2. nr 	 20T 3 cm−3 ; (10.32)

3. A Planck distribution remains a Planck
distribution as the scale factor S changes.
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(σ = π2κ4/(60�
3c2) and nr = photon density).

Hint: The photon density equals n(ν) = (8πν2/c3)
{
exp(hν/κT ) − 1

}−1

cm−3 Hz−1, from which

nr =
∫ ∞

0

n(ν) dν =
1
π2

(
κT

�c

)3 ∫ ∞

0

x2 dx

ex − 1
,

and εr =
∫∞
0

hν n(ν) dν. The integrals are tabulated; number of photons
dn in a comoving volume V (i.e. V ∝ S3) and in a frequency interval dν
equals dn = V n(ν)dν. Write this as dn = const · ν2f(ν/T )V dν. S changes:
S → S′, so ν, V, T → ν′, V ′, T ′. Use that λ ∝ S and ν ∝ S−1 (proof in
§ 11.1). Write ν = αν′ with α = S′/S. Then V = V ′/α3. Substitute: dn =
const · (ν′)2f(αν′/T )V ′dν′. The number does not change: dn = dn′, and that
implies T = αT ′ → a Planck spectrum at temperature T ′, consistent with
(10.20).

Exercise 10.8: Define ρr ≡ εr/c2 and prove that early in the radiation era

32πG

3
ρrt

2 = 1 . (10.33)

Hint: Write (10.21) as (Ṡ/S)2 = 8πGρr/3 (early radiation era → ignore εm);
ρr ∝ S−4 → S = const · t1/2, from which (Ṡ/S)2 = 1/(4t2).

Exercise 10.9: Early in the radiation era the age t and the density ρr of the
universe are given by

t 	 1.8 × 1020 T−2
r s ; (10.34)

ρr 	 1.4 × 10−35 T 4
r g cm−3 . (10.35)

Tr is the photon temperature in K. These relations are valid as long as the
radiation consists of photons and neutrinos.

Hint: (10.29): (S/S0)2 = (4a2/3tm) · t, then (10.20); (10.35): combine (10.33)
and (10.34).

Exercise 10.10: For S0/S ∼> 103 we have Tm = Tr due to thermal equilibrium.
But why should Tm follow Tr ∝ S−1? One could also imagine that Tr follows
Tm, i.e. Tr = Tm ∝ S−2, or something like that.
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Hint: In cosmology ‘matter’ is non-relativistic, so that the rest mass is the
largest contributor to εm. That part is not available for energy exchange with
photons: E 	 m0c

2 + 1
2m0v

2, and 1
2m0v

2 ∼ κT � m0c
2. For the evolution

of S(t) the total εm matters, but for energy exchange with photons only an
energy reservoir (κT/m0c

2)εm is available. This is much less than the reservoir
εr that the radiation has in stock: (κT/m0c

2)εm/εr is independent of S and
therefore equal to κT/m0c

2 at S0/S ∼ 3000 where εm = εr, and is � 1 for all
particles.

Exercise 10.11: Show that the baryon (protons + neutrons) to photon ratio
in the universe is constant, and very small. There are many more photons
than baryons in the universe:

nb/nr = constant 	 6.1 × 10−10 . (10.36)

Hint: (10.32) → nr ∝ T 3 ∝ S−3 and nb ∝ ρm ∝ S−3 → nr/nb = const;
nr = 20 (2.725)3 = 405 cm−3; nb = Ωbρc/mproton = 0.044 · 1.88 × 10−29 ·
0.712/1.67 × 10−24 cm−3 (Table 9.2).

10.4 The formation of structure

The formation of structures takes place in matter era, with roots going back
as far as the inflation period. This is a very active field of research involving
many complex physical processes. We restrict ourselves here to outlining a
few basic ideas. A density concentration will collapse under its own gravity if
the time for gravitational contraction (Gρ)−1/2 is shorter than the time L/v
required for a pressure correction (L = size of the region, v = sound speed).
This is the Jeans instability (1902). Equating the two gives

LJ = v

(
π

Gρ

)1/2

; TJ = (Gρ)−1/2 . (10.37)

Mass concentrations larger than the Jeans length LJ will collapse on a
timescale TJ, smaller ones will oscillate with a period TJ. The factor

√
π

emerges from a detailed calculation.

The Jeans instability is slowed down drastically by the expansion. Con-
sider a homogeneous spherical mass concentration with a density ρi and scale
factor Si that differs from the rest of the universe. The idea is that the out-
side world keeps evolving unperturbed as a k = 0 universe – the outside
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Fig. 10.5. A spherical region (density ρi) contracts in an expanding flat FRW
universe (density ρ).

world will not notice the inner mass concentration as long as it is spherically
symmetric – while the inner region evolves as a k = +1 universe. It does not
expand as fast as the external Hubble flow, reaches maximal expansion and
collapses, leading eventually to the formation of (a cluster of) galaxies. We
may describe the evolution of the disturbance by two equations of the form
(10.2):

S̈/S = − aρ ; S̈i/Si = − aρi . (10.38)

For brevity we write a ≡ 4πG/3. The cosmological constant can be ignored
in the early universe. Conservation of mass demands that

ρiS
3
i = ρS3 . (10.39)

Put ρi = ρ + δρ and Si = S + δS and linearise (10.39) for small δρ and δS:

0 = (ρ + δρ) (S + δS)3 − ρS3 	 S3δρ + 3ρS2δS ,

or
δρ/ρ = −3 δS/S

D= x . (10.40)

From (10.38):

S̈ + δS̈ = − a (ρ + δρ) (S + δS)

	 − aρS − aSδρ − aρδS . (10.41)

Because S̈ = −aρS, we are left with δS̈ = −aSδρ−aρδS. Now insert δρ = ρx
and δS = −Sx/3:

(Sx)̈ = 2aSρx = − 2S̈x . (10.42)

After some rearranging we find
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ẍ +
2Ṡ

S
ẋ +

3S̈
S

x = 0 . (10.43)

For a k = 0 universe in the matter era S ∝ t2/3, so that Ṡ/S = 2/3t and
S̈/S = −2/9t2:

ẍ +
4
3t

ẋ − 2
3t2

x = 0 , (10.44)

from which we see that x must be ∝ tα. Substitution: α2 + 1
3α − 2

3 = 0 →
α = 2

3 or −1. It follows that x = δρ/ρ ∝ t−1 or ∝ t2/3, i.e. ∝ S. The former
solution is a more rapidly expanding perturbation connecting to the Hubble
flow at t = ∞. The second solution is the one we are looking for, and the con-
clusion is that in the matter era δρ/ρ grows ∝ t2/3 ∝ S as long as δρ/ρ � 1.

The twist in the story is that the CMB gives information on the value of δρ
at the time of recombination. Prior to decoupling, adiabatic compression gen-
erates a temperature perturbation in response to a baryon density variation
δρ :

δT

T
=

1
3

(
δρ

ρ

)
b

. (10.45)

If δρ is located on the last scattering surface we observe this δT in the CMB
today, provided the density perturbation is smaller than the horizon size at re-
combination, i.e. for angles ∼< 1◦, see exercise. The observed CMB temperature
difference between two directions separated by 1◦ or less is (δT/T ) ∼ 3×10−5

(§ 11.4). Consequently (δρ/ρ)b,rec ∼ 10−4, which shows that the universe
was very homogeneous during the recombination. We may now compute the
present value of (δρ/ρ)b :(

δρ

ρ

)
b,0

	 103

(
δρ

ρ

)
b,rec

∼ 0.1 . (10.46)

It follows that the density contrast is only ∼ 0.1, so that we would have no
galaxies today, in obvious conflict with the facts. The conclusion is that struc-
ture formation in a universe filled with baryons, electrons and photons does
not proceed as observed. The missing link is the non-baryonic dark matter,
which turns out to be able to enhance the initial value of (δρ/ρ)b.

Structure and dark matter

The evolution of density perturbations in the dark matter and the baryon-
electron-photon gas in the early universe is a complicated affair where only
numerical simulations can provide reliable answers. We present here a much
simplified description of the main issues. In this and the next section ‘dark
matter’ is understood to be non-baryonic dark matter, assumed to be cold, 9

9 Non-baryonic matter is said to be hot / cold when the WIMP in question is
relativistic / non-relativistic at the moment of its own decoupling.



206 10 The Evolution of the Universe

non-baryonic dark matter

(a)   t < tmat

(b)   tmat < t < trec (c)   t = trec

x x

x

to observer

Fig. 10.6. The evolution of one Fourier component of dark matter and beγ fluid
density perturbations of the same wavelength. The x-axis is along an arbitrary
direction in the surface of last scattering, and comoving with the Hubble flow along
the line of sight. The expansion along the x-axis is suppressed. (a) At the beginning of
the radiation era the modes have the same phase and amplitude, and fast expansion
prevents growth. (b) During the matter era the dark matter mode amplitude grows
while the beγ mode is damped. (c) At recombination the photons propagate freely
in all directions and carry a characteristic angular temperature modulation pattern
that we observe today. The path length difference ∆ between dark matter and beγ
mode, observed from a distance of the last scattering surface, determines the position
of the maxima in the angular power spectrum of the CMB. See text and § 11.4.

so that the signal speed v is small. The baryon-electron-photon gas is referred
to as the beγ fluid, and includes of course all baryons, also those that develop
into dark baryons later. Frequent electron-photon Thomson scattering and
charge neutrality render the beγ fluid a tightly coupled system with a very
high signal speed v = c/

√
3, see exercise. The photons provide the pressure

and the baryons the inertia. The only communication between dark matter
and beγ fluid is through perturbations δφ in the gravity potential. The latter
are mainly generated by the density perturbations in the dark matter as it
has a much higher density than the baryons.
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At the end of the inflation period the energy of the scalar field ψ that
governs the evolution of the universe is converted into (dark) matter, § 13.3,
and fluctuations δψ appear as density fluctuations. Dark matter and beγ fluid
have the same initial relative density distribution, so that the Fourier modes
of δρ/ρ of both have initially the same phase and amplitude (at a given wave
number). But the expansion in the radiation era is so fast that the density
perturbations cannot grow (without proof), Fig. 10.6a.

In the matter era, dark matter modes with wavelengths smaller than the
horizon size grow ∝ S as derived earlier. But beγ modes of similar wavelengths
cannot grow, because their Jeans length is much larger since v = c/

√
3. Com-

putations show that beγ mode amplitudes decrease and that they are outrun-
ning their virtually stationary dark counterparts, Fig. 10.6b. In configuration
space the dark matter perturbations are seen to grow, and the associated grav-
ity perturbation tries to pull the baryons into the dark matter concentrations.
But photon pressure is able to prevent that, and the beγ fluid perturbations
are actually damped.

At recombination the beγ fluid desintegrates. Free photons depart in all
directions and the baryons now do fall into the gravity wells of the dark mat-
ter, after which (δρ/ρ)b grows ∝ S. But since (δρ/ρ)DM has grown relative
to (δρ/ρ)b, the initial value of (δρ/ρ)b is larger than the value 10−4 derived
previously. The observed δT/T of the CMB is further reduced by the required
summing over all waves and directions, the Doppler effect due to modes that
cross the last scattering surface (which we neglected sofar), perturbations
along the path to the observer, etc. The upshot is that in a universe with
non-baryonic dark matter the observed CMB temperature fluctuations corre-
spond to a larger value of (δρ/ρ)b,rec than what one would naively infer from
(10.45).

Simulations10 show that the matter distribution evolves into a cosmic
web of filaments and voids, more or less as observed, see Fig. 10.7. Models
in which the dark matter is hot (HDM models) predict a preponderance of
large mass concentrations because the small-scale density fluctuations formed
during the inflation period are largely wiped out by the fast WIMPs. Models
with cold dark matter (CDM models) with slow WIMPs produce more small-
mass concentrations, and agree better with the observed mass distribution. 11

The identity of the dark matter WIMP(s) is unknown.

10 Bertschinger, E., A.R.A.A. 36 (1998) 599.
11 See further Börner (1988) Ch. 10 ff; Kolb and Turner (1990) Ch. 9; Padmanabhan

(1993); Peacock (1999) Ch. 15 ff.
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Fig. 10.7. Large-scale structure simulations have become a sophisticated industry.
The computational volume of this CDM (Cold Dark Matter) simulation is a cube
with sides 500/h Mpc at z = 0, about 45 times the distance to the Virgo cluster. The
figure shows the projected dark matter distribution in a slice of 15/h Mpc (at z = 0)
cut from the periodic simulation volume at an angle, to avoid replicating structures
in the lower two images. The zoom sequence displays consecutive enlargements by
factors of four, centered on one of the many galaxy clusters present in the simulation.
The top frame shows several hundred gravitationally bound dark matter structures
orbiting the cluster. The bottom frame shows a virtually homogeneous isotropic
cosmic web of cold dark matter clusters, filaments and voids of characteristic size
100/h Mpc. The challenge for observational cosmology in the coming decades is to
detect and chart the baryonic component of this cosmic web.
The bottom frame measures 3/h Gpc horizontally, the top frame 11/h Mpc. Colour
coding: brightness indicates the relative density with respect to ρc, and colour the
velocity dispersion. The simulation comprises 1010 particles of 8.6 × 108/h M� and
began at z = 127 (t � 14Myr). Parameters: Ωm = 0.25, ΩΛ = 0.75, h = 0.73.
Credit: the Virgo consortium. From Springel, V., et al., Nature 435 (2005) 629.
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Imprints on the CMB

Because the last scattering takes place in a relatively short time interval, the
CMB provides a snapshot of the acoustic waves in the beγ fluid catching modes
of different wavelengths in different phases of their oscillation. At recombina-
tion the beγ modes have travelled a distance ∆ with respect to the dark
matter, and Fig. 10.6c shows the mode for which this distance corresponds to
λ/2, together with its dark matter counterpart. CMB photons coming from
direction A will have a higher temperature because they emerge from a region
with underdense dark matter, i.e. δφ > 0, which changes their temperature by
δT/T = δφ/c2, while their initial δT/T = 1

3 (δρ/ρ)b is also positive. Likewise,
photons from direction B exhibit a lower temperature because (δρ/ρ)b < 0
and δφ < 0. The result is a spatial modulation of the CMB temperature along
the x-direction. Modes of different wavelength will produce a less pronounced
spatial modulation. The weak side of the story is that photons react to the net
gravity perturbation of all modes, and summing over all modes and directions
x smoothes δT/T . Nevertheless we expect a maximum temperature difference
in the CMB between directions that subtend a distance λ/2 at recombina-
tion, where λ is constrained by (n + 1

2 )λ = ∆. If d is the distance to the last
scattering surface at the time of recombination, the corresponding angles are
θn 	 {(λ/2)/d}(Ωm + ΩΛ)1/2, or

θn 	 ∆
(2n + 1)d

(Ωm + ΩΛ)1/2 . (10.47)

For completeness we have included the factor (Ωm + ΩΛ)1/2 to allow for the
fact that curvature affects the apparent angles θn. Since ∆/d is of the order
of 0.7◦, relation (10.47) predicts a grainy structure in the CMB temperature
at sub-degree scales, which is clearly visible in Fig. 9.2. The corresponding
peaks and their positions θn have now been observed in the angular power
spectrum of the CMB. Relation (10.47) is not as simple as it looks because
∆ depends on λ, i.e. effectively on n, and we refer to Appendix E for details.
But the bottom line is that ∆ can be accurately computed since it depends
on linear mode physics, and so we have a yardstick of known length that we
observe from a distance d, and we may use (10.47) to determine the cosmo-
logical parameters (§ 11.4).

As explained in the next chapter, points whose mutual distance is larger
than the horizon size12 cannot have exchanged any signal yet. The above ap-
plies therefore to density perturbations smaller than the horizon size ∼ 2ctrec
at recombination, i.e. for angles smaller than ∼ 2ctrec/d ∼ 1◦. Tempera-
ture differences between directions subtending larger angles are solely due
to pre-existing gravity perturbations δφ. As adiabatic compression no longer
operates for these long-wavelength perturbations, relation (10.45) becomes

12 i.e. about 2ct in the radiation era – factor 2 due to expansion.
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invalid and needs to be replaced. A δφ in the region of emergence induces
a δT/T = δφ/c2. But the distance the photons have to cover also changes
(this is comparable to the Shapiro delay of radio signals, § 4.4). Consequently
they start their trip to us at some other instant, whence we see a different
temperature. It turns out that δT/T = − 2

3δφ/c2. The net result is called the
Sachs-Wolfe effect:

δT

T
=

1
3

δφ

c2
= − 1

3

(
H

kc

)2 (δρ

ρ

)
DM

. (10.48)

It is the dominant effect for density perturbations with wavelengths 2π/k
larger than the horizon size at recombination. The potential perturbations are
linked to dark matter density perturbations by Poisson’s equation −k2δφ =
∇2δφ = 4πGδρ, and G is eliminated with (10.21) in the form H2 = 8πGρ/3.
So δρ/ρ in (10.45) refers to baryons, but in (10.48) to dark matter. Recall that
in this section ‘dark matter’ stands for non-baryonic dark matter. The final
step is again a summation over all waves. For a so-called scale-free spectrum
of dark matter perturbations, 〈(δρ/ρ)2k〉 ∝ k, the result is that the r.m.s. CMB
temperature difference between two directions subtending an angle θ � 1◦ is
approximately independent of θ. 13

Exercise 10.12: Show that a region with a diameter equal to the horizon
size at recombination is now seen under an angle of ∼ 1◦.

Hint: This exercise and the next require some knowledge of the next chapters.
Let’s work in the subspace t = t0. The horizon size at trec is about 2ctrec (a
more precise value is given in (11.20)); at t0 this has expanded by a factor
1 + z = 1100. In a flat universe the angle is 2ctrec(1 + z)/d0 ≡ 2ctrec/d
where d0 = 3.3ct0 = 3.3 · 0.96c/H0 is the distance to the last scattering
surface, Table 11.1. For the influence of expansion on the viewing geometry
see Fig. 13.2.

Exercise 10.13: Show that the diameter of a sphere containing 1015 M� at
recombination is now seen under an angle of about 0.25◦.

Hint: Work again in the flat subspace t = t0. The angle is 2R/d0 with R fixed
by (4π/3)R3Ωbρc = 1015 · 2 × 1033; see previous hint for d0.

Exercise 10.14: Show that the signal speed in the beγ fluid is c/
√

3.

13 For more information on the physics of CMB temperature fluctuations see Pea-
cock (1999) Ch. 18; Hu and Dodelson, A.R.A.A. 40 (2002) 171.
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Hint: Ignore the baryons and electrons as there are very few of them, see
(10.36). The speed v of small perturbations in a medium with pressure p and
density ρ is v2 = ∂p/∂ρ (e.g. a gas with p 	 ρv2

th, so v 	 vth = thermal
speed). A photon gas has p = ε/3 and ρ = ε/c2. In reality the influence of the
baryons can only be neglected in the early radiation era. In the matter era
prior to recombination the signal speed is noticeably smaller than c/

√
3.
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Observational Cosmology

The two previous chapters dealt with the properties of universes of the FRW
type, which in all likelihood includes our own. The perspective was the behav-
iour of the homogeneous subspaces t = constant, as a function of t. However,
since we are located inside the universe we cannot observe these spaces. We
observe events located on our past light-cone, and that gives us a totally dif-
ferent perspective on the universe. Our view is restricted to a small section of
the universe, as epitomized in the cartoon on the left. The situation resem-
bles observers on Earth who cannot look beyond the horizon. The question
arises how the properties of these spaces t = constant may be determined
observationally. To this end it is necessary consider the meaning of distance
in an expanding universe and to obtain the theoretical form of the Hubble
relation. Attention is paid to the recent breakthrough in the determination
of the cosmological parameters H0, Ωm and ΩΛ by the observation of distant
type Ia supernovae and the angular correlation spectrum of the CMB. Finally,
we consider the computation of observable quantities by integration over the
light-cone.

11.1 Redshift and distance

The act of observing is analysed in Fig. 11.1. Our worldline is AA0, and BB0

is the worldline of a distant source B, at a constant co-ordinate distance r0

from us. The geometrical distances of A0B0 and AB are called d0 and d,
respectively. These are the distances of B to us in the subspace t = constant
at time t0 (‘now’), and at an earlier time t. The expansion makes that d0 > d,
but that is not visible in a co-ordinate picture. The fact that we observe B
means that it emits light propagating to us on a null geodesic, arriving in A0 at
time t0. We cannot observe B0 because it is not on our light-cone. The shape
of this light-cone is given by d(t). First we determine d0. Take dθ = dϕ = 0
in (9.20), to find that dl = S dr/

√
1 − kr2, and integrate:

d0 = S0

∫ r0

0

dr√
1 − kr2

=

{
S0f(r0) (k = ± 1) ;

S0r0 (k = 0) ,
(11.1)
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n0, l0, F0

A0

A

B0

B

n, l, L
(source)

t

t0 (now)
d t0

t
r0

(observer)

d

Fig. 11.1. Co-ordinate picture showing the vertical worldlines of two objects par-
ticipating in the Hubble flow, at a fixed co-ordinate distance r0. At time t (t0) the
geometrical distance of A and B is d (d0). Photons emitted by B travel along null
geodesics (dotted lines) and are detected in A0. For simplicity B is assumed to be
a monochromatic source (wavelength λ, frequency ν, luminosity L), while A0 sees a
wavelength λ0, frequency ν0 and a flux density F0.

with f(x) = arcsin(h)x, but we need that only in § 11.3. If we define v0 ≡ ḋ0

then v0 = Ṡ0f(r0) = (Ṡ0/S0)d0, or

v0 = H0d0 , with H0 ≡ Ṡ0/S0 . (11.2)

Apparently, the ‘geometrical speed’ v0 and the geometrical distance d0 obey
the Hubble relation. But this is rather useless as neither v0 nor d0 can be
measured. We can only measure distances of sources that we see, i.e. are
connected to us by a null geodesic, like for example B. But since B and A0

are not in the same subspace t = constant, their distance is not a well defined
concept. Moreover we do not measure a velocity but rather B’s redshift z:

z =
λ0 − λ

λ
, (11.3)

where λ, λ0 = wavelength at emission by the source B, and at detection in
A0, respectively. We shall now first express z in terms of the scale factor S,
and return to the distance issue later.

Fig. 11.1 shows two neighbouring null geodesics from B to A0. These are
given by1

dt

S
= − 1

c

dr√
1 − kr2

, (11.4)

1 Put ds2 = dθ = dϕ = 0 in (9.19), and dt > 0 for dr < 0.
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from which it is inferred that∫ t0

t

dt

S
=

1
c

∫ r0

0

dr√
1 − kr2

=
1
c

f(r0) . (11.5)

This relation determines the time of emission t for given r0. By comparing
(11.5) and (11.1) we see that

d0 = cS0

∫ t0

t

dt

S
. (11.6)

We now have two expressions for d0. In (11.1) we know only the co-ordinate
distance r0, but in (11.6) we have exploited the extra information of ‘eye
contact’ to eliminate r0. Because the right hand side of (11.5) is constant we
have ∫ t0

t

dt

S
=

∫ t0+δt0

t+δt

dt

S
→ δt0

S0
=

δt

S
. (11.7)

Furthermore we know that νδt = ν0δt0, so that λ0/λ = ν/ν0 = δt0/δt = S0/S,
and

z =
λ0 − λ

λ
=

S0

S
− 1 . (11.8)

We observe that z > 0 and this is now seen to be a consequence of the ex-
pansion: the scale factor increases, S(t0) > S(t). Apparently, the wavelength
of the photon is stretched in proportion to the expansion of the universe.

It is illuminating to derive the redshift from a different perspective. Ac-
cording to (9.23) or (9.25) a radial distance d� from the origin is equal to
d� = Sdχ. The local velocity v of a particle is therefore v = d�/dt =
Sdχ/dt = λc/

√
S2 + λ2, according to (9.48). A little algebra shows that

Sv/
√

1 − (v/c)2 = constant, or

pS = constant , (11.9)

where p is the particle’s momentum. This says that the De Broglie wavelength
h/p of the particle scales ∝ S, and expresses the fact that particles are subject
to adiabatic cooling as the universe expands. Note that relation (11.9) holds
also for photons since p = �k = �ω/c.

The redshift z is a key observable in cosmology, and astronomers are
habitually given to jargon like ‘the universe at redshift z’. This expression
indicates the spherical shell around us denoted as Σ(t) in Fig. 9.3, containing
all sources at that redshift, assuming that they follow the Hubble flow. It is
the cross section of our past light-cone and the subspace t = constant, where
t is fixed by (11.8) and S = S(t). However, the phrase is also used to indi-
cate the entire homogeneous subspace t = constant – a space that we cannot
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observe (but of course a very convenient theoretical concept).

Alternative explanations for the redshift have been advanced, such as the
tired light concept. The idea is that photons would be subject to a small
systematic energy loss as they propagate through space. That would mimic
Hubble’s law, in the absense of a real expansion. The main problem with this
explanation is that any mechanism that changes the energy of a photon will
also affect its momentum. That is, to some degree it is a scattering process.
Distant objects would be blurred – contrary to what is observed. Furthermore,
in the standard interpretation of the redshift, light curves of distant super-
novae should broaden with z, as is observed, but tired light would produce no
such broadening. Other explanations suffer from similar objections, and the
conclusion that the universe expands seems inescapable.

Cosmological models

We are now in a position to construct a cosmological model, that is, a listing
of the age t of the universe, of d, d0 and the luminosity distance dL (a concept
defined in § 11.3), as a function of redshift, see Table 11.1. This table is
constructed as follows. We begin by rewriting (11.8):

u =
S

S0
=

d

d0
=

1
1 + z

. (11.10)

Here we have used that d = Sf(r0) so that d/d0 = S/S0. Relation (11.10)
fixes d/d0, and t since S = S(t). To make this more explicit, start with
dt = (dt/du)du, so that t = ∫u

0 du/u̇, and:

t

t0
=

∫ u

0
du/u̇∫ 1

0
du/u̇

. (11.11)

The upper integration limit u equals 1/(1 + z). The explicit expression for t
and t0 is given in (10.14) and (10.15). Next, we write (11.6) in dimensionless
form with the help of cS0dt/S = cdt/u = cdu/(uu̇):

d0

ct0
=

∫ 1

u
(uu̇)−1 du∫ 1

0
du/u̇

. (11.12)

And finally, d = ud0. The next step is to substitute u̇ from (10.8), after which
numerical evaluation of (11.11), (11.12) and (11.27) is straightforward. We
have normalised distances to ct0, that is, the light distance corresponding to
the age of the universe. The advantage of using relative quantities in Table 11.1
like t/t0 and distances/ct0 is that there is no longer a big difference between
the models. This is why the reference model (Ωm, ΩΛ) = (1, 0) remains very
useful even if (Ωm, ΩΛ) �= (1, 0).
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Table 11.1. Two FRW universe models a

Ωm = 1; ΩΛ = 0; H0t0 = 0.67 Ωm = 0.3; ΩΛ = 0.7; H0t0 = 0.96

z t/t0 d/ct0 d0/ct0 dL/ct0 t/t0 d/ct0 d0/ct0 dL/ct0

0 1 0 0 0 1 0 0 0
0.2 0.76 0.22 0.26 0.31 0.82 0.16 0.20 0.24
0.5 0.54 0.37 0.55 0.83 0.63 0.30 0.46 0.69
1 0.35 0.44 0.88 1.8 0.43 0.40 0.80 1.6
2 0.19 0.42 1.3 3.8 0.24 0.42 1.3 3.8
5 6.8-2 0.30 1.8 1.1+1 8.6-2 0.31 1.9 1.1+1
10 2.7-2 0.19 2.1 2.3+1 3.5-2 0.21 2.3 2.5+1
30 5.8-3 7.9-2 2.4 7.6+1 7.3-3 8.9-2 2.7 8.5+1
100 9.9-4 2.7-2 2.7 2.7+2 1.2-3 3.0-2 3.1 3.1+2
1000 3.2-5 2.9-3 2.9 2.9+3 4.0-5 3.3-3 3.3 3.3+3
∞ 0 0 3 ∞ 0 0 3.4 ∞

a Notation: a ± b ≡ a × 10±b;
t = age of universe at the time the object emits the light we now see;
d = geometrical distance of object at time t;
d0 = geometrical distance of object now, at time t0;
dL = luminosity distance (11.27) of the object.

Exercise 11.1: Show that the invariant definition of the redshift is:

1 + z =
(kαuα)e
(kαuα)o

, (11.13)

where the index e, o indicates the emittor and the detector, respectively; uα =
4-velocity (of the emittor or the detector), and kα is the photon wavevector.

Hint: 1 + z = λo/λe = νe/νo = Ee/Eo. Then (3.55) with pα = �kα.

Exercise 11.2: Show that the age of an FRW universe at z � 1 is indepen-
dent of ΩΛ:

H0t = 2
3Ω−1/2

m (1 + z)−3/2 . (11.14)

Hint: For u = S/S0 � 1 only the Ωm/u-term in (10.14) matters. If we compute
trec of our universe with (11.14) the result is trec = 4.8 × 105 yr. Why is this
larger than (10.30)?
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Fig. 11.2. Scale model of an (Ωm, ΩΛ) = (1, 0) FRW universe. On the vertical axis
the age t of the universe in units of the present age t0. On the horizontal axis, in
green, a 1D cross section along an arbitrary line of sight with equidistant galaxies
(for simplicity). Distance scale: we arbitrarily adopt A0C0 = 1.2 ct0. The galaxies
partake in the universal expansion (- - -) and evolve with time as they do so. Also
indicated are the geometrical distances d and d0 from Table 11.1, and A0’s past
light-cone d(t) in red. The wiggly lines are photons travelling locally with speed c.
Adapted from Hoyng, P., Zenit, July/August 1998, p. 340.

11.2 The visible universe and the horizon

We shall now take a closer look at the properties of FRW universes as given
in Table 11.1. Since we discuss issues here that most FRW universes share, we
focus on the (Ωm, ΩΛ) = (1, 0) model as a typical example. Age and expansion
of this universe are given by (10.12): S/S0 = (t/t0)2/3 and t0 = 2

3H0
−1. For

the shape of the past light-cone d(t), it is easiest to use (11.6) because we
know S(t): d = (S/S0)d0 = cS

∫ t0
t

dt/S = ct2/3
∫ t0

t
dt/t2/3, or

d

ct0
= 3

(
t

t0

)2/3{
1 −

(
t

t0

)1/3}
. (11.15)

This leads to the scale model shown in Fig. 11.2. The horizontal axis of this
figure is a 1D cross section through the universe along an arbitrary line of
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Fig. 11.3. Photon propagation in an expanding universe may be understood with
the example of a cyclist moving at constant speed c with respect to the local road,
while the road is being stretched like a rubber band. Left: no expansion, the path
is a straight line with inclination c. Middle: the expansion is initially slow, but
accelerates with time. Right: expansion is initially fast, but slows down with time,
as in a real universe (for ΩΛ = 0). Adapted from Hoyng, P., Zenit, July/August
1998, p. 340.

sight. On this axis are located our system A, then B, next C, etc. The broken
lines show how the universe expands ∝ t2/3. Each 1D cross section may be
generalised to a 3D image of the universe at that age. This is the green section
of Fig. 11.2. It is effectively an external point of view: the observer is located
outside the universe and surveys the entire universe at a glance, as if one is
studying a map.

However, due to the finite speed of light we (A0) do not see our neighbours
at the same time t0 but at some earlier time. All light that we receive at t0
must have travelled along the past light-cone, given by (11.15). Some photons
come from far and began their journey long ago, while others enjoyed only a
brief trip. But all have travelled along the path marked light-cone, indicated
in red in Fig. 11.2. Hence, we see the systems B1, C2, D3,.., behind each other,
at progressively larger redshift. These systems are juvenile forms of B0, C0,
D0,.. located in the universe at time t0. The upshot is that we experience the
universe as a series of nested spherical shells, each showing a different piece
of an increasingly younger universe. This is the internal point of view, that
of an observer inside the universe. Note that Fig. 11.2 is also the geometrical
picture corresponding to the co-ordinate picture in Fig. 9.3.

The shape of the past light-cone may be understood with the help of
Fig. 11.3. A photon in an expanding universe is like a cyclist on a road that
is being stretched like a rubber band. The cyclist moves always at constant
speed c with respect to the road (locally special relativity holds). The right
panel corresponds to the situation in the universe. The expansion is initially
fast and slows down gradually. The cyclist is initially ‘drawn away’ from A
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(us), but may eventually reach any position in the direction of cycling. This
picture is an exact model of photon propagation, as we shall now show. The
distance d between A and the cyclist obeys

ḋ = Hd − c , (11.16)

where H = H(t). The first term describes the homogenous stretching of the
road, the second term the motion with respect to the road. Substitute H =
Ṡ/S, and (11.16) may be written as(

d

S

)
˙ = − c

S
. (11.17)

Integration yields d/S = −c
∫ t

0
dt/S +const. Initial condition: d = 0 at t = t0.

Result: d = cS
∫ t0

t
dt/S, which coincides with (11.6) since d = (S/S0)d0 .

We draw attention to two remarkable properties of FRW models. The first
is that according to Fig. 11.2 distant sources at large z were relatively near to
us at the time they emitted the radiation we now see. Formally d → 0 as t → 0.
In spite of this proximity, the light could not reach us any sooner because the
universe was expanding so much faster than it does today – otherwise it would
have long since recollapsed. One might say that new space is created at a very
high rate, which makes that the photon ‘moves away from us as it travels in
our direction’. Only later, when the expansion has slowed down, the photon
is able to reach us. The inward bending of our past light-cone at large z is
therefore caused by the extremely rapid expansion of the early universe.

The particle horizon

The second feature is that d0 → 3ct0 or thereabout for z → ∞, see Table 11.1.
The present distance of the remotest objects that we can see is apparently
not larger than ∼ 3ct0. Let’s check that for the (Ωm, ΩΛ) = (1, 0) universe:
d0 = (S0/S)d = (t0/t)2/3d, according to (10.12), and with (11.15): d0 =
3ct0{1 − (t/t0)1/3} → 3ct0 for t → 0. This boundary is called the horizon,
more precisely the particle horizon. Since light travels locally at speed c one
may say that a photon has traversed a distance ct0 from the moment of the
Big Bang. The expansion increases the distance between starting and arrival
point of the photon apparently by another 2ct0. This extra amount depends
on the details of the expansion, i.e. on S(t), but not very strongly. For a (1, 0)
reference universe t0 = 2

3H0
−1, and the horizon distance is 2c/H0. And for an

(Ωm, ΩΛ) = (0.3, 0.7) universe the horizon is at 3.4ct0 (Table 11.1), which is
equal to 3.4c · 0.96/H0 ∼ 3.3c/H0.

The horizon distance in a FRW universe is apparently a few times the
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Fig. 11.4. The visible universe is the space inside the horizon of an observer. It
contains all matter from which the observer may have received a light signal. The
visible universes of any two observers A and B comoving with the Hubble flow
overlap progressively, but were disjunct at some point in the past. A can only see
B and vice versa after they have entered each other’s horizon. This leads to the
so-called horizon problem: why do A and B begin to participate in the expansion at
the same moment?

Hubble radius c/H0. The space inside the horizon is called the visible universe,
sometimes just horizon space. Note that each observer has its own visible
universe, see cartoon on p. 212. The name horizon derives from the analogy
with the terrestrial horizon. An object can only have interacted with objects
inside its horizon – anything outside can have had no influence.2

Consider two point A and B at a fixed co-ordinate distance r0, Fig. 11.4.
In a k = 0 universe their geometrical distance d at time t is S(t)r0. It follows
that d ∝ tα with α 	 1/2 in the radiation era, α 	 2/3 in the matter era. The
horizon distance at that time is (put t → 0 and t0 → t in (11.6)):

d = cS

∫ t

0

dt

S
=

ct

1 − α
, (11.18)

or 3ct in the matter era and 2ct in the radiation era. The general expression
is given in (11.20). It follows that the horizon distance grows eventually faster
than the geometrical distance, so that the visible universes of A and B will
overlap more and more in the future. Conversely, regardless of the distance of
A and B, if we go back in time, there comes a moment that their horizon spaces
were disjunct. This leads to the so-called horizon problem, a fundamental
defect shared by all FRW universes, that has only been remedied by the
advent of inflation theory, see Ch. 13.

2 An ΩΛ �= 0 universe possesses also an event horizon, see exercise 11.6.
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Fig. 11.5. The Big Bang is often misinterpreted as a point explosion, with mat-
ter expanding into a pre-existing empty space. Adapted from Hoyng, P., Zenit,
July/August 1998, p. 340.

A common mistake

The nature of the Big Bang is often misunderstood. The very name suggests
an analogy with a point explosion, Fig. 11.5. This seems a rather natural idea,
and that may explain why it appears to be so popular. But it is in conflict
with the observations. Briefly, the argument is as follows. From the average
density in the universe and the fact that the edge of the explosion is at most
ct0 away, the optical depth to the boundary is inferred to be much smaller
than 1, so that we should be able to see it. But the universe is also observed
to be highly isotropic. These two statements are incompatible unless we are
located at the centre of a spherically symmetric explosion, which is highly
unlikely. Accepting that would mean a relapse to some kind of a geocentric
world model. It would, incidentally, also be impossible to explain the CMB
as a remnant of the Big Bang since any radiation emitted by the explosion is
necessarily ahead of the matter.

The correct picture is that the universe has no boundary, that space
is homogeneously filled with matter, and that space itself is swelling. This
picture emerges clearly from the derivation of the Robertson-Walker metric
in §§ 9.2 and 9.3. The galaxies have constant co-ordinates (‘do not move’)
and are rather like currants in a rising bun. This picture of a swelling space
should be used with care. The wavelength of a photon (more generally, the
De Broglie wavelength of a particle) is stretched proportional to S, indeed,
stretched with the swelling of space, but that does not imply that extended
material objects expand as well. That would only happen if the various parts
of the object move along geodesics of the Robertson-Walker metric. But this
is usually not the case due to extra forces, for example internal elastic forces
in a measuring rod, or local gravity in galaxies.
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Exercise 11.3: Show that in an (Ωm, ΩΛ) = (1, 0) universe the photons we
see today (including those of the CMB) have never been farther away from
us than d = (2/3)2ct0 	 0.44ct0. This happened at t/t0 = (2/3)3 	 0.30. At
that point the photon just beats the expansion and its geometrical speed ḋ to
us is zero. Any conflict with SR?

Hint: See Fig. 11.2, and determine the maximum of (11.15). There is no conflict
with SR: the locally measured speed of the photon is always c. The co-ordinate
speed of a photon falling into a black hole also becomes zero near the horizon,
§ 6.3.

Exercise 11.4: Continue exercise 9.9 and prove that in an (Ωm, ΩΛ) = (1, 0)
universe the bullet travels a co-ordinate distance

∆r =
2β

S0

c

H0
, (11.19)

provided the initial velocity is small, β � 1. This result may be interpreted
as follows. Mark the position that the bullet will eventually reach as A. The
geometrical distance between the point of firing and A is now 2β(c/H0).

Hint: (9.48) becomes dr/dt 	 βcS0/S2 or ∆r 	 βcS0

∫∞
t0

dt/S2; (10.12):
S/S0 = (t/t0)2/3 and integrate. Then use (11.1).

Exercise 11.5: Show that the horizon distance in the early universe is given
by:

d = 3ctmx
(√

x + 1 − 1
)

, (11.20)

in the notation of § 10.3. Show that d = 2ct for early times, 3ct for late times,
and 2.25ctrec at recombination. Does this imply that the speed of light is larger
than c, or that the horizon actually moves at superluminal speed?

Hint: d = cS
∫ t

0
dt/S = cu

∫ u

0
du/(uu̇) = cx

∫ x

0
dx/(xẋ) = ctmx

∫ x

0
dx/

(x dx/dτ); insert (10.25): d = 3ctmx
∫ x

0
dx/(2

√
1 + x ) → (11.20). For early

times (x � 1): d 	 3
2ctmx2; then (10.29): d 	 2ctmτ = 2ct. For large x:

d 	 3ctmx3/2 = 3ctmτ = 3ct. At recombination x = 3 → d = 9ctm = 9
4ctrec.

Twice no.

Exercise 11.6: Show that an ΩΛ �= 0 universe has also an event horizon and
compute its size.
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Hint: Horizons delineate spheres of influence. The particle horizon embraces
all points (at time t0) that have been able to interact with us in the past.
Points inside the event horizon will interact with us in the future (how-
ever distant). Geometrical distance of starting position of a photon that
reaches us at T is d0 = cS0

∫ T

t0
dt/S. Let T ↑ ∞: d0 = c

∫∞
1

du/uu̇ =
(c/H0)

∫∞
1

du(Ωmu + ΩΛu4 + Ωku
2)−1/2 which converges if ΩΛ �= 0. For

Ωk = 0 (flat universe): d0 < {c/(H0

√
ΩΛ )}

∫∞
1

du/u2 = c/(H0

√
ΩΛ ). Pho-

tons departing to us from beyond d0 will never reach us due to the exponential
expansion.

11.3 Luminosity distance and Hubble relation

The geometrical distances d and d0 in Fig. 11.2 are convenient theoretical
concepts but they cannot be measured. We shall not dwell on the issue of
distance determination here, as it is a large topic in its own right. We re-
strict ourselves to illustrating how d and d0 can be determined through the
method of standard candles, a time-honoured method to find distances of re-
mote objects. The idea is that there are classes of objects whose members
all have about the same absolute luminosity. For example, Cepheid variables
with the same oscillation period, the brightest member of a cluster, type Ia
supernovae, etc. Once the distances to a subset of objects have been deter-
mined independently, we only have to recognise a source as a member of its
class, and its absolute luminosity L is known, at least in principle. This leads
to the concept of luminosity distance dL, a measurable quantity, defined as
L = 4πd2

LF0 where F0 is the flux density of the source measured at t0, and L
the luminosity of the source at emission, Fig. 11.1.

For convenience we assume that the source is monochromatic. Number
of photons emitted in δt seconds: δN = (L/hν)δt. These are spread over a
spherical surface of area O = 4πS0

2r0
2, see below relation (9.22), so that

F0 =
hν0 δN

O δt0
=

L

4πS0
2r0

2

δt

δt0

ν0

ν

=
L

4πS0
2r0

2

1
(1 + z)2

, (11.21)

from which it follows that

dL =
(

L

4πF0

)1/2

= r0S0(1 + z) , (11.22)
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In particular for k = 0:
dL = (1 + z)d0 . (11.23)

The luminosity distance is a formal quantity in the sense that is not possible
to indicate a space ‘in which dL lies’, as we could in case of d and d0. The
point is, however, that dL can be measured, and then d0 is also known through
(11.23) or (11.26).3

We shall now derive the Hubble relation, i.e. the relation between the
two observable quantities dL and z. We start from (11.1), and note that the
function f(x) equals arcsin x, x, arcsinhx for k = 1, 0,−1. Relation (11.1) may
now be inverted:

r0 = sinn(d0/S0) , (11.24)

with

sinnx =

⎧⎪⎨
⎪⎩

sin x (k = 1) ;
x (k = 0) ;
sinhx (k = −1) .

(11.25)

This means that r0 = sinn
(
|Ωk|1/2H0d0/c

)
, because c/H0S0 = |Ωk|1/2 ac-

cording to (10.5). Insert that in (11.22):

H0dL

c
= |Ωk|−1/2 (1 + z) sinn

(
|Ωk|1/2 H0d0

c

)
, (11.26)

and we have found the generalization of (11.23) for k �= 0. Next we use (11.6)
or (11.12) to obtain d0 = c

∫ 1

u
du/uu̇ and take u̇ from (10.8):

H0dL

c
= |Ωk|−1/2 (1 + z) sinn

{
|Ωk|1/2

∫ 1

u

dx

(
Ωmx + ΩΛx4 + Ωkx

2
)−1/2

}
. (11.27)

Since u = 1/(1+z) we have found the theoretical form of the Hubble relation.
Simplification is possible if z is small: the integration limits 1 and 1/(1 + z)
are close to each other, so that the argument of the sinn-function becomes
small and we may use sinn x 	 x :

H0dL

c
	 (1 + z)

∫ 1

(1+z)−1
dx

(
Ωmx + ΩΛx4 + Ωkx

2
)−1/2

. (11.28)

For k = 0 this relation is exact for all z. For small z (11.27) may be approxi-
mated as (see exercise):

3 There are also other distance measures in use, such as the angular diameter
distance. See Lightman et al. (1975), exercise 19.9.
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Fig. 11.6. Hubble diagram of type Ia supernovae. Datapoints within ∆z < 0.01 have
been grouped together into a single average datapoint. Also shown are the theoretical
curves for three FRW universe models. These data provide direct evidence for the
existence of dark energy, i.e. a positive cosmological constant Λ. From Knop, R.A.
et al., Ap. J. 598 (2003) 102.

H0dL

c
	 z

{
1 + 1

2 (1 − 1
2Ωm + ΩΛ)z + · · ·

}
, (11.29)

The parameters H0, Ωm and ΩΛ determine the structure and the evolution
of the universe, and large efforts have been undertaken to determine their
values, in particular during the last decades. The principle is straightforward.
A fit of observations of z and dL to (11.29) yields H0 and 1

2Ωm − ΩΛ. But
the method is plagued by many problems such as selection effects, a limited
redshift range (z ∼< 0.3) and the fact that standard candles are not perfect.
There is always a spread in intrinsic luminosities. For a long time this caused
astronomers to be at loggerheads about the value of H0,4 while 1

2Ωm − ΩΛ

could not really be determined. The negative correlation between Ωm and
ΩΛ, incidentally, is easy to understand: more matter (Ωm ↑) means more

4 Weinberg (1972) p. 441 ff; Börner (1988) § 2.2; Peebles (1993) Ch. 5; Fukugita,
M. et al. Nature 366 (1993) 309.
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gravity, and that may be compensated by adding antigravity, i.e. more vacuum
energy (ΩΛ ↑). It is unfortunate that quasars which have redshifts up to z ∼ 5
are no good as standard candles: in a given redshift interval their apparent
magnitudes vary greatly. Otherwise the values of H0, Ωm and ΩΛ would have
long since been known.

These efforts have culminated in an HST Key Project to measure H0,
which has led to the value H0 = 72 ± 8 km s−1Mpc−1. 5 The subsequent
measurement of H0 by the WMAP mission has confirmed this value with
improved accuracy: H0 = 71 ± 4 km s−1Mpc−1. It is encouraging that this
value is now being confirmed by independent techniques, such as the Sunyaev-
Zeldovich effect, a method that does not rely on the classic (and slippery)
distance ladder.6 Since the first measurements of H0 around 1930 its value
has come down by almost an order of magnitude. 7

The Supernova Cosmology Project has used distant Type Ia supernovae,
bright objects that may be detected out to z ∼< 1, and have been shown to be
rather reliable standard candles. They are believed to be white dwarfs with
progenitor masses in the range 4− 6M�, pushed over the Chandrasekar limit
by mass transfer. When they explode they all have (hopefully) the same mass
and composition, which explains the standard candle property. The project
managed to measure Ωm and ΩΛ independently (with low accuracy), Fig. 11.6.
The supernova data clearly demonstrate that the cosmological constant of our
universe is nonzero.

Exercise 11.7: Show that the redshift is given by the Doppler formula z = v/c
for small z, but GR corrections become important at larger z.

Hint: From (9.4) and (11.29); d 	 dL for small z.

Exercise 11.8: Provide the details of the derivation of (11.29).

Hint: Write (· · ·)−1/2 ≡ g(x) in (11.27); g(1) = 1 on account of (10.4) and a ≡
g′(1) = −1+ 1

2Ωm−ΩΛ. Put x = 1−y and expand the integral to second order
in z: ∫1

(1+z)−1 g(x) dx 	 ∫z−z2

0 g(1− y) dy 	 ∫z−z2

0 (1− ay) dy 	 z(1− z− 1
2az).

And sinnx = x to second order in x.

5 Freedman, W.L. et al., Ap. J. 553 (2001) 47.
6 Mason, B.S. et al., Ap. J. 555 (2001) L11.
7 Trimble, V., P.A.S.P. 108 (1996) 1073.
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Exercise 11.9: Prove the Hubble relation for an (Ωm, ΩΛ) = (1, 0) universe:

H0dL

c
= 2(1 + z)

(
1 − 1√

1 + z

)
, (11.30)

and show once more that the distance to the horizon is 3ct0.

Hint: (11.28) → H0dL/c = (1+z)
∫ 1

(1+z)−1 dx/
√

x; (11.23): d0 = dL/(1+z) →
2c/H0 = 3ct0 for z → ∞.

Exercise 11.10: Given an object at z = 0.5 in an (Ωm, ΩΛ) = (2, 0) FRW
universe. What are the values of: (1) the co-ordinate r, (2) the distance d of
the object at the time of emission of the light we receive from it today, and
(3) the temperature of the CMB at that particular time.

Hint: For large values of z there is no alternative but to make a new Table 11.1
by numerical integration. For small z (11.29) is an option → H0dL/c 	 0.5.
Then (11.26): H0d0/c 	 arcsin(1/3) 	 0.34. Expression for r0 above (11.26):
r0 	 1/3. Furthermore d = (S/S0)d0 = d0/(1 + z) = 2d0/3. Temperature
CMB: (1 + z)2.725K = 4.09K.

11.4 The microwave background

The COBE satellite has measured the spectrum and the angular distribution
of the temperature of the CMB on angular scales of 7◦ and larger, and ∆T/T
was found to be of order 10−5. The CMB is therefore highly isotropic. The
angular distribution of the CMB temperature is a very important issue as it
carries information on the clustering of matter in the universe at decoupling,
z ∼ 1100. Various groups have measured ∆T/T down to spatial scales of
∼ 0.1◦ in a section of the sky. 8 The WMAP mission launched in 2001 has
mapped the entire sky with a resolution of ∼ 0.2◦. The maps are cleaned from
foreground effects, and the resulting temperature distribution is decomposed
in spherical harmonics Y�m(θ, ϕ) :

∆T (θ, ϕ) ≡ T (θ, ϕ) − T0 =
∞∑

�=1

�∑
m=−�

a�mY�m , (11.31)

8 E.g. De Bernardis, P. et al., Nature 404 (2000) 955; Lee, A.T. et al., Ap. J. 561
(2001) L1.
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Fig. 11.7. Angular power spectrum of the CMB temperature as measured by
WMAP (points in black), obtained by processing the data through (11.32) and
(11.35). The angular scale (top) is added afterwards for convenience. The black line
is the best fit to a ΛCDM model (= CDM model with Λ �= 0). The red points are
previously published results. From Hinshaw, G. et al., Ap. J. S. 148 (2003) 135.

where T0 = 〈T 〉 is the average temperature, and a�m is given by

a�m =
∫

dΩ ∆T Y ∗
�m . (11.32)

We consider two averages: (1) an average over an ensemble of maps i (all
possible realisations of the CMB sky), in terms of which, for example, 〈T 〉 =
limN N−1

∑
i Ti(n); (2) an angular average over one CMB map, and 〈·〉 =

(4π)−1
∫

dΩ.

The three dipole coefficients a1m are dominated by the Doppler signal
due to a net velocity of the solar system of 371 ± 1 km s−1 with respect to
the surface of last scattering. The intrinsic dipole anisotropy of the CMB is
presumably much smaller, but cannot be separated from the total signal. The
angular correlation function C(θ) is defined as:

C(θ) = 〈∆T (n1)∆T (n2)〉 |n1·n2 = cos θ (11.33)

=
1
4π

∑
�

(2� + 1)C� P�(cos θ) , (11.34)
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with
C� = 〈|a�m|2〉 	 1

2� + 1

∑
m

|a�m|2 . (11.35)

P�(x) is the Legendre polynomial of order �. The first = sign in (11.35) defines
C� as an ensemble average; 〈|a�m|2〉 does not depend on m (spherical symme-
try). C� may also be estimated by the second expression, obtained by angular
averaging, where a�m are the expansion coefficients of the one CMB sky we
have. At small � the values of the two expressions differ appreciably due to
cosmic variance.9 For completeness we mention that relation (11.34) may be
inverted with the help of the orthogonality of the Legendre polynomials:

C� = 2π

∫ π

0

C(θ)P�(cos θ) sin θ dθ . (11.36)

The proof of relations (11.34), (11.35) and (11.36) is somewhat technical and
deferred to Appendix E.

Fig. 11.7 shows the measured values of c� ≡ �(� + 1)C�/2π, referred to as
the angular power spectrum. We recognize a flat plateau at low �, followed by
a series of peaks at larger �, thus confirming the physical explanation given in
§ 10.4. We have found earlier that the directions of maximal CMB temperature
difference subtend angles θn given by (10.47). In Appendix E it is shown that
this implies that the first peak in the power spectrum is at

�0 	 π/θ0 	 277 , (11.37)

while the observed value is � = 220 ± 1. The origin of the discrepancy is that
our treatment ignores two aspects of the physics of beγ modes, see Appen-
dix E.

A comparison of the WMAP data in Fig. 11.7 with model simulations
of the c� allows a precise determination of the cosmological parameters, see
Table 9.2. In brief outline the story is as follows. The WMAP data, HST
Key Project and supernova data together determine Ωtot ≡ Ωm + ΩΛ, i.e.
the geometry of space. The height ratio of the first and second peak fixes
ωb ≡ Ωbh2, while ωm ≡ Ωmh2 follows from the height ratio of the first
peak and the flat plateau at low �. And h follows from (10.47): trec is known
since we know Ωmh2 and zrec (by modelling) and εr0 (standard neutrinos),
see § 10.3. Since Ωm = ωm/h2 and ΩΛ = Ωtot − ωm/h2, the value of d at zrec

depends effectively only on h, cf. Table 11.1. But the position θ0 of the first

9 Cosmic variance is cosmologist’s jargon indicating the effect that observed and
theoretically computed mean values of a cosmological quantity may differ consid-
erably because our visible universe is only one possible realisation out of many.
The r.m.s. difference between the two expressions in (11.35) is (∆C�)

2
r.m.s./C2

� =
2/(2� + 1).
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peak is measured, hence h and then also Ωb, Ωm and ΩΛ are known. Readers
interested in the (complex) details are referred to the literature.10

In 2007 ESA’s PLANCK mission will be launched carrying a third gener-
ation CMB experiment with a much improved angular resolution and sensi-
tivity. This mission is expected to determine the cosmological parameters H0,
Ωm and ΩΛ with a precision of 1%.

Exercise 11.11: Show that (∆T )r.m.s./T0 	 3 × 10−5.

Hint: (11.34): C(0) = (∆T )2r.m.s. =
∑

� (2� + 1)C�/4π 	
∑

� c�/� with c� ≡
�(�+1)C�/2π plotted in Fig. 11.7. The sum is dominated by the low-� plateau.
Intelligent handwaving: C(0) 	 clow � ·

∑
� �−1 	 clow � log L; take the cut-off

at L = 103: (∆T )r.m.s./T0 	 (1000 · 10−12 log 103)1/2/2.725.

11.5 Light-cone integrals

The computation of observable quantities requires integration over the past
light-cone, and we consider here a few simple problems. The first is what is
the volume of our past light-cone, i.e. what is the proper volume of the space
that we see as we look into the universe? The light-cone may be thought of as
a series of nested shells, but the volume of the shells will ultimately decrease
with z because the expansion was less advanced.

Draw two subspaces t = constant in Fig. 9.3 intersecting the light-cone at
t and t+dt. The 2-volume of an intersection is 4πS2r2, see below (9.22). The
proper volume of the shell is now 4πS2r2 × the light distance cdt, and the
proper volume V of the light-cone follows by integration:

V = 4πc

∫ t0

0

S2r2 dt = 4πc

∫ t0

0

S2 sinn2

(
d

S

)
dt . (11.38)

Here we have applied (11.1): d = Sf(r) or r = f−1(d/S) and f−1 = sinn. To
avoid the complications of non-Euclidean geometry we assume a flat universe,
and then (11.38) reduces to the transparent expression V = 4πc

∫ t0
0

d2 dt. To
keep the calculations simple, we consider the reference model (Ωm, ΩΛ) =

10 Hu, W. and Dodelson, S., A.R.A.A. 40 (2002) 171; in particular Fig. 4; Page, L.
et al., Ap. J. S. 148 (2003) 233; Spergel, D.N. et al., Ap. J. S. 148 (2003) 175.
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(1, 0). With the help of d = (S/S0)d0, u = S/S0, dt = du/u̇ and u̇ from
(10.8) we obtain:

d = cu

∫ 1

u

du

uu̇
=

cu

H0

∫ 1

u

du√
u

=
2cu

H0
(1 −

√
u ) . (11.39)

The calculation may now be completed:

V = 4πc

∫ 1

0

d2

u̇
du

= 2π
(

2c

H0

)3 ∫ 1

0

u5/2(1 −
√

u )2 du

= 4π
(

2c

H0

)3 ∫ 1

0

x6(1 − x)2 dx

	 4π

3

(
2c

H0

)3

· 1.19 × 10−2 . (11.40)

It follows that in a (1, 0) universe the proper volume of the past light-cone is
about 1% of the volume inside the horizon (4π/3)(2c/H0)3 – a number one
would not easily have guessed otherwise.

Next, we compute the number of objects N that are located on the light-
cone (i.e. how many objects do we see regardless of their brightness), assuming
that the universe is homogeneously filled with objects and that their density
is now n0. Obviously, the past density is n = n0(S0/S)3 = n0/u3, and the
answer is found by inserting n in the integrand of (11.40):

N = 2πn0

(
2c

H0

)3 ∫ 1

0

(1 −√
u )2√

u
du =

4πn0

3

(
2c

H0

)3

, (11.41)

which is the present density × the volume inside the horizon. This should
come as no surprise because there is, by definition, a one-to-one correspon-
dence between objects on the past light-cone and ojects inside the horizon,
see Fig. 11.2.

Olbers’s paradox

How bright is the sky if the objects of the previous example all have a constant
luminosity L0? In a flat universe the number of objects in a shell cdt and in
a solid angle δΩ is n · d2 · δΩ · cdt, and the flux density at the observer of one
object is L0/4πd2

L, by definition. The shell contributes therefore an amount
δI0δΩ = nd2 δΩ · cdt · (L0/4πd2

L) to the total brightness I0 (W m−2 sr−1 or
erg cm−2 s−1 sr−1), or, ignoring absorption by intervening matter:
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δI0 =
cL0

4π

(
d

dL

)2

ndt . (11.42)

We integrate (11.42) using that dt = du/u̇, u̇ = H0u
−1/2 for (Ωm, ΩΛ) =

(1, 0) and d = ud0 = u2dL according to (11.10) and (11.23):

I0 =
n0L0

4π

c

H0

∫ 1

0

u3/2 du =
n0L0

10π

c

H0
. (11.43)

The extragalactic background intensity in the visible and infrared is estimated
to be I0 ∼ 5×10−5 erg cm−2 s−1 sr−1, and it would follow that the extragalac-
tic luminosity density is n0L0 ∼ 109 h L� Mpc−3. More realistic computations
including source evolution, extinction, spectral range, etc., confirm that I0 is
finite.11

The historical roots of the sky brightness problem date back, one might
say, to the days when Newton introduced universal gravity. In correspondence
with Bentley12 he concluded that a stationary universe would have to be in-
finite (and that it required a supernatural power to subsist). It was gradually
understood that a stationary infinite universe suffered from another problem.
The sky would be as bright as the Sun, because any line-of-sight must even-
tually hit a stellar surface, no matter in which direction one looks. There
would not be a spot in the sky that is not covered by a stellar surface (non-
astronomers are reminded that the brightness of a stellar disc is independent
of its distance). This is known as Olbers’s paradox.13 The problem disappears
in relativistic cosmology as it allows for an expanding universe with a begin-
ning in time. The night sky is dark because arbitrarily long lines-of-sight no
longer exist, and the stars within our horizon (the visible universe) cover only
a minute fraction of the sky. Contrary to what is often stated in the older
literature,14 the decisive factor is the finite age of the universe – the redshift
merely causes an additional reduction of I0, see exercise.

11 Wesson, P.S., Ap. J. 367 (1991) 399.
12 Bentley, a priest, was after proving the existence of God by the classic argument

of design, and he took the precaution to ask Newton to comment on his ideas in
the light of the then new theory of universal gravity, see The correspondence of
Isaac Newton, H.W. Turnbull (ed.), Cambridge U.P. (1961), Vol III.

13 The physician and amateur astronomer H.W. Olbers published this paradox in
1826, but others had raised the issue before him. He also discovered a number of
comets and the asteroids Pallas and Vesta.

14 E.g. Gamov, G., in Theories of the Universe, M.K. Munitz (ed.), The Free Press
(1957), p. 390.
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Exercise 11.12: Give an alternative computation of I0 by considering the
radiation energy density stored in the subspace t = t0, and show that the
redshift just adds an extra reduction factor.

Hint: The energy emitted by one source is
∫ t0
0

L0 dt, but that is not the
energy that is stored in the subspace t0 = constant, as the redshift re-
duces the energy by an amount S/S0. The stored radiation energy density
is ε0 = n0

∫ t0
0

L0(S/S0) dt. Since the radiation is isotropic the intensity is
I0 = cε0/4π:

I0 =
cn0

4π

∫ t0

0

L0
S

S0
dt , (11.44)

which is the same as (11.43) since u = S/S0 and dt = du/u̇ = u1/2du/H0.
The argument is purely local and shows that (11.43) is also valid for k �=
0. The redshift may be switched off by dropping S/S0 in (11.44) → I0 =
(n0L0/6π)(c/H0), a factor 5/3 more.
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The Big Bang

During the radiation era the universe was a perfectly homogeneous, rapidly
expanding space filled with dense, hot matter, but other than that it was a
rather dull period. The universe just expanded and cooled, and that was it –
nothing of importance happened. For more exciting times we have to go back
to the first 1000 seconds, when temperature and density were so high that
nuclear reactions took place. The universe started its life as a gigantic fusion
reactor that produced the matter we observe today. Traditionally, this period
is referred to as the Big Bang. The matter and the cosmic microwave back-
ground (CMB) are the two main relics of the hot Big Bang. Very soon after
the discovery of the CMB by Penzias and Wilson in 1965 it was shown1 how
nuclear reactions could explain the observed chemical composition of the uni-
verse (H, D, 3He, 4He, 7Li). The idea of nucleosynthesis in the early universe
and the concept of a relic thermal background radiation goes back, however,
to Gamov and co-workers.2 Weinberg’s book The First Three Minutes remains
one of the best accounts of this period of the universe, despite the fact that
it was written before inflation theory and astro-particle physics made their
impact on cosmology. Although some of the details may be complex and still
unknown, the story of the Big Bang remains, in broad outline, one of sublime
and almost capricious simplicity.

12.1 Nuclear reactions

We shall only summarise the main points, and not engage in explicit calcu-
lations. More information can be found in Weinberg (1977), Börner (1988),
Padmanabhan (1993), Kolb and Turner (1990), and Peacock (1999). We begin
with a brief review of the three kinds of elementary particles and the compos-
ite particles.

1 Wagoner, R.V. et al., Ap. J. 148 (1967) 3.
2 Alpher, R.A. et al., Phys. Rev. 73 (1948) 803.
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Table 12.1. Temperature, density and age of the universe as a function of the
energy scale

particle m0c
2 Tr = m0c

2/κ ρ t
(MeV) (K) (g cm−3) (s)

W±, Z0 9 × 104 1015 1025 10−10

p, n 940 1013 1017 10−7

π, µ 120 1012 1013 10−4

e± 0.5 6 × 109 103 10

Quarks. There are 6 types, called up (u), down (d); charm (c), strange (s) and
top (t), bottom (b). They carry one of the three positive colour charges (‘red,
green or blue’) responsible for the strong nuclear force. In addition they have
a fractional electric charge. The electric charge of u, c, t is 2

3 , that of d, s, b is
− 1

3 . Together with their antiparticles (that carry a negative colour charge)
they number 36 in total. They are fermions with rest masses ranging from
mu 	 1 MeV to mt 	 175 GeV.

Leptons. There are also 6 types of these: e− (∼ 0.5 MeV), νe; µ− (∼ 100
MeV), νµ; τ− (∼ 1.8 GeV), ντ . Together with their antiparticles (e+, νe, ..)
12 in total. They are fermions that do not feel the strong nuclear force. The
neutrinos have no electric charge, and zero mass according to the standard
model. Experimental upper limits: νe < 4.7 eV, νµ < 160 keV and ντ < 24
MeV). Measurements of atmospheric and solar neutrinos indicate that neu-
trinos switch flavour as they propagate. These so-called neutrino oscillations
imply that they should have a nonzero mass.

Gauge bosons take care of the interaction between these particles. There is 1
graviton g (gravity); 3 vector bosons W±, Z0 mediating the weak interaction;
the photon γ (electromagnetic force) and 8 gluons for the strong interaction.
The vector bosons have a rest mass of about 90 GeV and an electric charge of
±1, 0. The other gauge bosons are massless. The gluons carry a colour charge.

Hadrons. Free quarks cannot exist – they occur only in combinations of two
or three quarks called hadrons (= heavy particles). Accordingly, there are two
kind of hadrons. The mesons are colour-free particles consisting of a quark
and an antiquark, for example π+ = ud, π− = du, π0 = (uu− dd)/

√
2 (∼ 140

MeV). Baryons are colourless combinations of 3 quarks. The lightest are the
proton p = uud and the neutron n = udd (∼ 940 MeV). The mesons and all
heavier baryons (Λ = uds, Σ+ = uus, ..) are unstable.

During the extremely hot and dense initial phase of the universe, the par-
ticles it contains are continuously subject to interactions of the type
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A + B ↔ C + D ;

D ↔ P + Q ,
(12.1)

etc. As long as κTr > m0c
2 there is enough energy to create particles of rest

mass m0. The time available for these reaction is of the order the time scale
on which the universe changes due to expansion, τS = S/Ṡ. Because S ∝ t1/2

we get

τS ∼ H−1 ≡ (Ṡ/S)−1 = 2t

= 2 × age of the universe . (12.2)

The available time is therefore of the order of the age of the universe (the
factor 2 should not be taken too seriously). In view of the values of ρ and t in
Table 12.1 we may suspect that τS is generally longer than the characteris-
tic reaction times between the elementary particles, and detailed calculations
confirm this suspicion. This has a very important consequence: matter and
radiation are in thermal equilibrium. If we wish to know the abundances of
the particles at a certain temperature we may just as well ignore the expan-
sion, as the reactions proceed much faster anyway, and compute the thermal
equilibrium state.

In a non-equilibrium calculation hundreds of rate equation must be ad-
vanced in time. That is not really a big deal, but the problem is that many
reaction cross sections are not well known. For equilibrium calculations sim-
pler and reliable techniques are available. It is no longer necessary to know
the reaction cross section. A typical example is relation (12.9) which shows
how the density ratio of protons and neutrons in thermal equilibrium depends
only on their mass difference and the temperature, but not on the details of
the weak interactions that maintain the equilibrium. It follows that the mate-
rial composition of the universe is not strongly dependent on previous states.
Even if we make a mistake in the early universe because the particle physics
at these high energies is not well known, it would have little effect on the
material composition at a later time. That is why it is at all possible to make
statements on the material evolution of the early universe with some degree
of confidence.

In broad outline, the situation is as follows. All particles with rest mass
energy m0c

2 smaller than κTr are continuously being created and destroyed,
usually by many different types of reaction. They have a thermal Fermi-Dirac
or Bose-Einstein energy distribution, and they have number densities of the
order of those of the massless particles (for example photons). However, as
the universe evolves, κTr becomes smaller than mAc2, and then things get a
little complicated. It may happen that particle A vanishes completely from
the scene because reactions such as (12.1), top, and the annihilation reaction
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A + A → 2γ (12.3)

proceed entirely to the right. Free neutrons for example ultimately disappear
because they are unstable, though the majority of them gets locked up in 4He,
as we shall see. History plays a role in two ways:

- There are a number of conserved quantities, such as the net electric charge
(probably zero) and the baryon number (= number of quarks minus number
of antiquarks). These quantities are simply passed on from early times to later
evolutionary stages.

- Because temperature and density decrease, all reaction times increase, and
they do so faster than the universe ages. As a result, in the whole network
of reactions creating and/or destroying particle A some connections become
sterile. These paths effectively disappear from the network. This has no im-
mediate influence on the number of particles A. That happens only when the
last path disappears – assuming A did not vanish earlier due to (12.3), for
example. The jargon is that particle A decouples or freezes out. What remains
must be calculated for every species individually by solving rate equations.

12.2 The first 100 seconds

The thermal history of the early universe evolves through several stages that
we briefly describe here, with reference to the overview in Table 12.2.

Quark-gluon plasma

The story begins when the universe was not yet 10−7 seconds old. The tem-
perature was 1013 K or more, and the density was 1017 g cm−3 or higher. The
universe consisted of a quark-gluon plasma, an extremely dense and heavy
stew of quarks, leptons and gauge bosons, all in comparable amounts. The
beginning of the quark era is believed to be at t ∼ 10−30 s, when the temper-
ature had the impressive value of 1024 − 1025 K, and the universe was a linear
factor S/S0 	 5× 1024 smaller than it is today. The space within our current
horizon (radius ∼ 10 Gpc, Table 9.1) would, at that time, fit in a sphere with
a radius of 100 meter!

Baryogenesis

The quark-gluon plasma is believed to be subject to a phase transition and
to condense into hadrons at a few times 1012 K. A heavy-ion collision pro-
gramme at CERN and later at Brookhaven National Laboratory (the Rel-
ativistic Heavy Ion Collider (RHIC)) has given hints about the properties
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Fig. 12.1. A Little Bang. Snapshot from a simulation of a collision of two lead nuclei
5×10−24 s after an off-centre impact at 17.4 GeV per nucleon pair. Unaffected ‘spec-
tator’ nucleons are white and grey. Colliding hadrons are advanced with a hadron
transport model (UrQMD) that handles the first collisions and their hadronic prod-
ucts. At full overlap these hadrons are decomposed into (supposedly deconfined)
quarks, which are then advanced with a quark molecular dynamics model (qMD).
The colours above indicate the six (anti)colour charges. During the subsequent evo-
lution the quarks quickly team up in colour-neutral clusters that decay into hadrons.
The figure is stretched in the beam direction by a factor γ (of order 10) to undo
the Lorentz contraction, but time dilation effects are still there. Credit: S. Scherer,
University of Frankfurt. See Scherer, S. et al., New J. Phys. 3 (2001) 8.1.

of the quark-gluon plasma and the phase transition.3 Various groups have
supported these experimental efforts with simulations, one of which is shown
in Fig. 12.1.

Very soon after the phase transition only the lightest hadrons remain
(p, p and n, n and some mesons). As the temperature drops further p, p and
n, n annihilate according to (12.3). Calculations show that the baryon den-
sity drops to nb/nr = nb/nr ∼ 10−18. Therefore we have a conflict with the
observations, which tell us that nb/nr ∼ 6 × 10−10 and that there is no anti-
matter, exercise 10.11. Attempts to resolve this conflict include, for example,
models with spatial fluctuations which may result in regions having a slight
excess of matter, alternated by places with a small antimatter excess. After

3 For a non-technical account see Schwarzschild, B., Phys. Today, May 2000, 20;
Ludlam T. and McLerran, L., Phys. Today, October 2003, 48.
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Table 12.2. Overview of the material evolution of the universe

atoms

galaxies neutrino, microwave and
graviton background

  Boldface printed particles have approximately the same density, which is about 109

times larger than the other particles on the same line.

age

(s)

temperatur

(K)

size

(S / S0)

composition

baryons lepton gauge bosons

annihilation in the hadron era there remain regions with matter and antimat-
ter, and we happen to live in a matter region. The idea has been abandoned
because the regions are small and contain much less than a galactic mass.
Moreover, the boundaries produce much more annihilation radiation than is
actually observed. It is now believed that a small quark-lepton excess of the
order of

nq − nq

nq + nq
∼ 6 × 10−8 (12.4)

was created everywhere in the universe. Computations show that after the
annihilations have taken place, nb/nr ∼ 6×10−10 and nb � nb, as observed.4

4 One might think that nb/nr ∼ 6 × 10−8. This is correct if there were only one
non-relativistic quark gas instead of 36 extremely relativistic ones. The photons
and each individual quark type have initially about equal abundance. Moreover,
a sizeable fraction of the kinetic energy of the quarks is ultimately converted into
photons as well. As a result there are about 100 times more photons after the
annihilations than one might think. The proper attack to this type of problem is
to require that the total entropy is constant, as in exercise 12.2.



12.2 The first 100 seconds 243

The origin of this excess (12.4), to which we owe our existence, is un-
known. A popular speculation is asymmetric decay of leptoquarks X that play
a role in Grand Unified Theories (GUTs). These supermassive bosons (∼ 1015

GeV) may have existed in the very early universe from ∼ 10−43 s to ∼ 10−34 s.
Around t ∼ 10−34 s they decay into two quarks or a quark-lepton pair:

X →
{

q + q (r) ;

q + l (1 − r) ;
(12.5)

X →
{

q + q (r) ;

q + l (1 − r) .
(12.6)

Between parentheses the branching ratios for each decay channel; X and X
decay at the same net rate, but when r is a little larger than r a small matter
excess will arise, see exercise.5 One way to check this scenario would be to
measure the induced instability of the proton: the uu in p = uud fuse into
a leptoquark by the inverse of the top channel of (12.5), which decays again
into d + e+ through the lower channel. The remaining d and the new d form
π0. Net result: p → π0 + e+. The predicted decay time is very long, of the
order of 1032 yr, because the intermediate leptoquarks are so massive. The
Japanese Kamiokande facility, well-known for its detection of neutrinos, was
originally designed to measure the lifetime of the proton.

Returning to the Big Bang, at the end of the hadron era, around t = 10−4

s, the last mesons and the heavier leptons have decayed as well. The universe
is now a rapidly expanding fireball consisting of photons, neutrinos, e+, e−

in approximately equal profusion, with a tiny admixture (∼ 6 × 10−10) of
protons and neutrons.

The lepton era

Thermal equilibrium between e±, ν, ν and photons is maintained by scattering
of photons and neutrinos off e±, and through reactions such as

ν + ν ↔ e+ + e− ↔ 2γ . (12.7)

The equilibrium of these particle with p and n (and between p and n) is
maintained by the weak reactions

5 More information on the matter-antimatter symmetry problem in Börner (1988)
Ch. 8; Kolb and Turner (1990) Ch. 6, and Peacock (1999) § 9.6. For a summary
of history and current ideas see Ellis, J., Nature 424 (2003) 631.
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Fig. 12.2. The evolution of the radiation temperature during the decoupling of the
neutrinos and the e± annihilation.

p + e− ↔ n + νe ;

n + e+ ↔ p + νe ;

n ↔ p + e− + νe .

⎫⎪⎪⎬
⎪⎪⎭ (12.8)

These reactions leave the number of protons plus neutrons invariant. The
physical state of the matter and the radiation is entirely determined by the
temperature. The previous history of the universe is only relevant in that it
determines (a) the ratio (nn +np)/nr and (b) the time t at which a particular
temperature is attained. Three important events take place during the lepton
era:

- At Tr ∼ 3 × 1010 K the neutrinos decouple because the interaction times
between e± and the neutrinos become of the order of τS . For the time being
Tν and Tr remain equal as both continue to scale ∝ S−1.

- The ratio nn/np is determined by thermal equilibrium:

nn

np
= exp

{
− (mn − mp) c2

κTr

}
;

(mn − mp) c2 	 1.3 MeV .

(12.9)

At the beginning of the lepton era we have κTr � (∆m) c2 so that nn 	 np;
the mass difference between p and n plays no role yet. Around Tr 	 3 × 1010

K the ratio nn/np begins to decrease, and soon the reaction rates of (12.8)
become larger than the age of the universe so that thermal equilibrium (12.9)
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can no longer be maintained. Calculations show that nn/np freezes out at
Tr ∼ 3 × 109 K at value of (Kolb and Turner (1990) § 4.3; Peacock (1999)
Ch. 9):

nn

nn + np
	 0.16 . (12.10)

- Electrons and positrons begin to disappear by annihilation when Tr drops
below ∼ 6× 109 K. A small fraction of the e− remains, equal to the fraction
of protons. The effect of the e± annihilation is that the photon temperature6

Tr decreases for some time less rapidly than ∝ S−1. In the end Tr becomes
a factor (11/4)1/3 	 1.4 larger than the neutrino temperature Tν , Fig. 12.2.
During the subsequent evolution of the universe the energy distribution of the
neutrinos remains a thermal (Fermi-Dirac) distribution with Tν ∝ S−1. The
present temperature of the neutrino background is therefore predicted to be
2.725K/1.4 = 1.95K. A measurement of this neutrino temperature would be
a powerful check on the hot Big Bang scenario (and would also secure your
fame in cosmology).

Exercise 12.1: Show that the decay of an X, X pair causes the baryon num-
ber B to increase by r − r, and that a matter excess will arise when r > r.

Hint: X and X are field quanta and have B = 0, as do the leptons l; quarks
have B = 1

3 , and three quarks compose a baryon with B = 1. Antiparticles
have opposite B, hence ∆B = 2 · 1

3r − 1
3 (1 − r) − 2 · 1

3r + 1
3 (1 − r) for each

decaying X, X pair.

Exercise 12.2: Explain that Tr = (11/4)1/3 Tν 	 1.40Tν at the end of the
e+e− annihilation.

Hint: During the annihilation the state of the matter is no longer given by a
simple limiting case as in Table 10.1, but by relation (9.39) which says that the
entropy S in a volume S3 is constant. In the calculation below only extremely
relativistic gases play a role for which p = 1

3ε = 1
3ρc2 and S = S3(p+ρc2)/T =

(4c2/3)S3ρ/T (without proof). Let ρ = aT 4, for example (10.31) for photons,
then for a mixture Σ ai(TS)3i is constant. The entropy of each neutrino gas
remains constant (the neutrinos have no interaction and play no role), while
p, n do not contribute significantly to S due to their relatively small den-
sity. What remains is photons, e+, e− prior to annihilation, and only photons

6 It is customary to denote the photon temperature as Tr, and to identify it with
the temperature of (the radiation in) the universe, even though some components
of the radiation, such as the neutrinos, have a different temperature.
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thereafter:

ar(TrS)3b + a+(T+S)3b + a−(T−S)3b = ar(TrS)3a . (12.11)

b, a = before, after annihilation; +, − = e+, e−. Now a− = a+ = 7
8ar (see

literature), and T−b = T+b = Trb whence 11
4 (TrS)3b = (TrS)3a. But since

Tν ∝ S−1 we have (TrS)b = (TνS)b = (TνS)a, so that after the annihilation
11
4 T 3

ν = T 3
r . Details in Peebles (1993) p. 160; Padmanabhan (1993); Peacock

(1999) Ch. 9.

Exercise 12.3: Demonstrate that the last scattering surface of the neutrino
background is located at z ∼ 1010. Explain that the sooner a background
freezes out, the lower its temperature will be today.

Hint: The neutrino temperature now and at freeze-out are known, Fig. 12.2;
furthermore T ∝ S−1. The earlier a particle A freezes out the more the photon
temperature will rise with respect to that of A due to later annihilations.

12.3 The synthesis of light elements

At the end of the lepton era the structure of the universe is very simple. It
has a flat geometry (k is effectively zero), and it contains a homogeneous
mix of photons and neutrinos, ‘doped’ one might say with a tiny fraction of
e−, p and n. During the next and longest phase of the Big Bang elements
heavier than hydrogen are ‘cooked’. Helium could already have existed in the
lepton era, because its binding energy is so large (28 MeV ∼= 3 × 1011 K).
However, the lighter nuclei that are needed to get helium fusion going are not
available, because their binding energies are smaller than κTr at that time.
And formation of helium through four-particle collisions is extremely rare.
The upshot is that heavier nuclei may only be generated in sequential two-
particle collisions. The first step in this process, deuterium (D), determines
the rate of the synthesis due to its small binding energy (2.2 MeV) and large
cross section for photo-dissociation. Only when Tr ∼ 109 K (t ∼ 100 s) the
equilibrium

n + p ↔ D + γ (12.12)

begins to shift to the right, Fig. 12.3. Once D is available, other fusion reactions
follow immediately:

D + D → 3He + n ;

D + 3He → 4He + p ;

}
(12.13)
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Fig. 12.3. Synthesis of the light elements, after Boesgaard, A.M. and Steigman, G.,
A.R.A.A. 23 (1985) 319.

D + D → 3H + p ;

D + 3H → 4He + n ,

}
(12.14)

and the result is that virtually all neutrons end up in 4He, and only a small
fraction in 3He and D. We are now in a position to estimate the abundance
of 4He in the universe. The value of nn/(nn + np) was 0.16 at the freeze-
out, and decreased slowly thereafter to about 0.13 at the beginning of the
helium synthesis due to β decay of the neutrons. Because almost all neutrons
end up in 4He, the mass fraction of 4He equals Y = 2 × nn/(nn + np) 	
0.26. Calculations give a result between 0.20 and 0.28, dependending on the
assumed value of nb/nr. The mass fraction of the remaining deuterium equals
roughly 10−4, and that of 3He is a bit lower. Tritium (3H) reaches a level of
∼ 10−7, but decays in 18 years and disappears.

The formation of heavier elements is hampered by the absence of stable
nuclei with mass number N + Z = 5 and 8. Some 7Li and 7Be is formed by
the reactions

4He + 3H → 7Li + γ ;

4He + 3He → 7Be + γ ;

7Be + e− → 7Li + νe ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(12.15)
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Fig. 12.4. Stable nuclei with Z ≤ 4. A free neutron and tritium are subject to slow
β decay, last line of (12.8), with e-folding times of 900 s (n) and 18 years (3H); 7Be
disappears eventually because it is unstable to electron capture, the last reaction in
(12.15).

but it is very little because they require the rare nuclei 3H and 3He. As the uni-
verse reaches the respectable age of 10 minutes the nucleosynthesis is drawing
to a close and the radiation era begins. Since 7Be disappears too, Fig. 12.4,
we conclude that the final product of the nucleosynthesis in the early universe
is 4He plus a little D, 3He and 7Li. Heavier elements were not formed, broadly
speaking, because there was no time. The early universe expanded very fast
and the reaction rates soon became vanishingly small due to decreasing den-
sities and Coulomb barriers getting too large. The universe had to wait until
the arrival of the stellar era. Stellar interiors have the right density and tem-
perature for the synthesis of carbon and heavier elements.7 And they have
lots of time.

Primordial abundances are difficult to observe because abundances change
with time due to evolutionary effects. The best value for 4He is Y 	
0.24 ± 0.015, observed in isolated extragalactic H II regions with little con-
tamination from stellar nucleosynthesis. This agrees well with the theoreti-
cal prediction. An important point is that stars cannot deliver these large
quantities of helium. Stellar nucleosynthesis could have produced Y ∼ 0.04 at
most, and the spatial distribution would be clumpy and cluster around regions
of star formation. However, the observed 4He distribution is rather homoge-

7 There is actually a third production process: spallation by cosmic rays. A fraction
of the 6Li, 7Li, 11B, and all 9Be and 10B in the universe has been formed in this
way. See Geiss, J. and Von Steiger, R., in Fundamental Physics in Space, ESA
SP-420 (1997), p. 99.
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neous. It follows that the helium in the universe must be primorial.8

The abundance of deuterium in the interstellar medium is D/H 	
(1.6 ± 0.1) × 10−5. Deuterium is special in that it is only destroyed dur-
ing stellar evolution and never created. Hence all measured abundances
are lower limits to the primordial abundance. The extragalactic deuterium
abundance has recently been measured from absorption lines in the light
of a quasar that passes through a gas cloud at z = 3.6.9 The result is
4 × 10−5 < D/H < 2.4 × 10−4, nicely consistent with the theoretical pre-
diction. The primordial 3He abundance is very difficult to get hold of. The
solar 3He/H value is (1.5 ± 0.4) × 10−5. A 20-year programme of galactic H
II region observations yielded 3He/H < (1.1 ± 0.2) × 10−5 for the primordial
abundance.10 The measured 7Li abundance in some 100 metal poor Popula-
tion II halo stars is 7Li/H = (1.6± 0.07)× 10−10, and this number is believed
to be indicative of the primordial 7Li abundance.11

The correct prediction of the abundances of the light elements is a resound-
ing success for the theory of the hot Big Bang. We saw that the abundance of
4He does not depend strongly on the assumed value of nb/nr, but that of D,
3He and 7Li does. This provides a sensitive method to determine the value of
nb/nr, and because that ratio is constant and nr0 is known, we may infer the
current baryon density ρb0. The conclusion is that the outcome of the light el-
ement synthesis agrees with the observed abundances if ρb0 = (3±1.5)×10−31

g cm−3, or Ωb = 0.03 ± 0.015. The light element synthesis scenario is there-
fore in accordance with the recent WMAP measurements (Ωb = 0.044±0.004,
Table 9.2).

More details on these topics may be found in the (extensive) literature, e.g.
Boesgaard, A.M. and Steigman, G., A.R.A.A. 23 (1985) 319; Börner (1988)
Ch. 3; Kolb and Turner (1990) Ch. 4 (FORTRAN code: p. 96); Padmanabhan
(1993) Ch. 3 and 11. There exist also simplified models of the light element
synthesis.12

8 Quasi-steady-state cosmologists, on the other hand, maintain that all 4He has
been produced in stars. The energy released by the relevant fusion reactions has
a density which is now equal to that of the microwave background. Therefore they
interpret the CMB as thermalised starlight (Burbidge, G., et al., Physics Today,
April 1999, 38).

9 Songaila, A., et al., Nature 385 (1997) 137.
10 Bania, T.M., et al., Nature 415 (2002) 54.
11 Molaro, P., et al., A&A 295 (1995) L47.
12 Bernstein, J., et al., Rev. Mod. Phys. 61 (1989) 25; Eskridge, B. and Neuen-

schwander, D.E., Am. J. Phys. 64 (1996) 1517.
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Exercise 12.4: Prove that at the beginning of the helium synthesis nn/(nn +
np) 	 0.13.

Hint: nn = nn0 exp(−t/τ); t 	 200 s, τ 	 900 s; nn + np remains constant in
β decay (n → p + e− + νe).

Exercise 12.5: During the helium synthesis the universe was a fusion physi-
cist’s dream: a gigantic fusion reactor that converted some 13% of all hydro-
gen into helium in about 1000 seconds. In comparison, stars need 1010 year to
fuse a few percent of their hydrogen into helium. Explain why the enormous
amount of energy liberated during the helium fusion had no influence on the
evolution of Tr – unlike the e+e− annihilation during the lepton era.

Exercise 12.6: Neutron star model builders have a hard time in finding a
reasonable equation of state p(ρ) at ρ ∼ 1015 g cm−3. Cosmologists, however,
who study the universe at far greater densities couldn’t care less. Why is life
so much easier on them?

Hint: at comparable densities the matter in the universe is much hotter than
neutron star matter. If we increase T at constant density, the interaction en-
ergy between nuclei becomes progressively less important, and that simplifies
the equation of state. Ultimately, the matter behaves as an ideal gas.

Exercise 12.7: What would be the 4He abundance if deuterium had a higher
binding energy?

Hint: It could be as large as Y ∼ 2 × 0.16 = 0.32.
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Inflation

The standard model of the Friedmann-Robertson-Walker (FRW) universe
with a hot beginning is very successful and provides a natural explanation
for:

1. the observed expansion velocities of distant galaxies;

2. the microwave background radiation as a relic of the hot Big Bang;

3. the chemical composition of the universe (H, D, 3He, 4He and 7Li) as a
relic of nuclear fusion during the Big Bang.

However, a number of problems remain, and the most important of these will
be investigated here. For example, an obvious question is why does the uni-
verse expand? The only answer we have at this stage is: ‘because it expanded
faster in the past’. Other issues are the horizon problem, and the question
why the geometry of the universe is flat. To illustrate the flatness problem,
we know that Ωm + ΩΛ = 1.02 ± 0.02, so that the universe is flat within
the observational errors. But the universe must have been much flatter in the
past. In exercise 10.3 it was shown that Ωm(t) + ΩΛ(t) + Ωk(t) = 1 and

lim
t→0

[Ωm(t), ΩΛ(t), Ωk(t)] = [1, 0, 0] . (13.1)

To ensure that Ωm 	 0.3 and ΩΛ 	 0.7 now, the density ρ in the early uni-
verse must have been very close to the critical density ρc at that time (but
not exactly equal). And ΩΛ must have have been minimally different from
zero in the past, by just the right amount to achieve that ΩΛ 	 0.7 now. The
fact that Ωk appears to be zero within the error bounds means that Ωk must
have been almost exactly zero in the past. The universe was flat then, and it
still appears to be flat today. Why was the universe born with these special
initial conditions?

In quest for a solution of these problems, cosmologists and particle physi-
cists have increasingly joined forces. The early universe is an ideal place for
particle physicists to test their theories under conditions that can never be
attained in a laboratory. They go to the Great Accelerator in the Sky rather
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Fig. 13.1. The horizon problem. We observe that the early universe, i.e. a spherical
shell around us at large z (t 	 t0), is isotropic. The distance of the shell to us at
time t is dlk and the size of causally connected regions is dho, the horizon distance at
that time. Since dho 	 dlk, the early universe consists of many causally unconnected
regions that don’t know about each other’s existence because they have not yet been
able to exchange a light signal. If, however, the very early universe has gone through
a period of inflation, then dho � dlk.

than to CERN. This has led to the discovery of the possibility of inflation,
a brief period of extremely rapid expansion immediately after the birth of
the universe. Designed originally to alleviate the problem that the universe
would contain too many magnetic monopoles, inflation soon turned out to be
a panacea providing a solution for the horizon and flatness problem as well. In
addition, it explained why the universe expands, and it provided the primor-
dial energy density fluctuations from which the large-scale structure in the
universe may develop later. In view of these impressive achievements, and in
spite of its speculative character, the inflation concept appears to be the most
important theoretical development in cosmology of the last decades. Here we
shall explain the basic idea of inflation with the help of a simple model due
to Linde.1

13.1 The horizon problem

The Friedmann-Robertson-Walker (FRW) universe has the nasty property
that it consists of many different regions that are outside each other’s horizon.
And, as explained in § 11.2, the younger the universe is, the worse it gets.
And yet, according to observations, our universe is on average homogeneous
1 See Linde, A.D., Physics Today, September 1987, 61.
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Fig. 13.2. We detect photons of the CMB in the plane θ = π/2 from two directions
subtending an angle ϕ0. Our worldline is AA0. The photons originate from P1 and
Q1 on the surface of last scattering at z ∼ 1100. We arrange things so that P1 and
Q1 are just inside each other’s horizon, so that the physical conditions in P1 and Q1

may in principle be the same. Assuming that space is flat, the photons travel along
the sides of a flat isosceles triangle that has expanded a factor ∼ 1100 when they
reach the observer. In the text it is shown that ϕ0 ∼ 1◦. This leaves the observed
high degree isotropy of the CMB over the entire sky unaccounted for.

and isotropic. Let P and Q in Fig. 13.1 be two distant objects at large z.
We observe that the surroundings of P and Q have the same properties,
within the error bounds. The properties in P and Q depend only on the space
inside their respective horizons. The figure displays our light-cone, and the
geometrical distance dlk between us and an object at time t,2 as well as the
geometrical distance dho to the horizon at time t. These are given by

dlk = cS

∫ t0

t

dt

S
; dho = cS

∫ t

0

dt

S
. (13.2)

In Chap. 11 both distances had been indicated with the same symbol d, for
example in (11.15), (11.18) and (11.20), but here a distinction is necessary. In
an (Ωm, ΩΛ) = (1, 0) universe the angular size of a causally connected region
that we observe at a redshift z is (see exercise):

ϕ0 =
dho

dlk
=

∫ t

0
dt/S∫ t0

t
dt/S

=
1√

1 + z − 1
� 1√

z
, (13.3)

for large z. It follows that dho/dlk � 1, so that the early visible universe
consists of many causally unconnected regions. The problem is innate to all
2 In the notation of § 11.2 dlk equals d = (S/S0)d0.
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Fig. 13.3. Behaviour of the scale factor in the very early universe. The dotted line
S ∝ t1/2 causes all problems.

FRW models and the outcome of (13.3) is only weakly dependent on Ωm and
ΩΛ. The horizon spaces of P and Q have had no opportunity to interact.
What mechanism is responsible for the neighbourhood of P and Q having
similar physical properties (i.e. why is the universe isotropic)? Why indeed
would P and Q begin to participate in the expansion at the same moment?
The issue is one of causality. An FRW universe seems to behave like someone
who walks along the street although the various parts of his body are unable
to exchange signals.

Let’s take the CMB in our own universe as an example, and t in Fig. 13.1
is the time of recombination trec. We have seen in exercise 11.5 that the
horizon distance at recombination is 2.25ctrec. The distance dlk of the last
scattering surface to us at that time is 3.3 × 10−3 · 0.96c/H0 (Table 11.1).
In fact we are repeating exercise 10.12, with a better value for dho, and the
result is that the angular size of causally connected regions at recombination
is ϕ0 = dho/dlk 	 1.1◦ in our universe, while (13.3) predicts ϕ0 	 1.7◦ for a
(1, 0) universe. It follows that the observed isotropy of the CMB on angular
scales > ϕ0 is accidental, as there is no causal connection possible on larger
angular scales. The viewing geometry is further explained in Fig. 13.2.

Origin and remedy of the horizon problem

The physical origin of the horizon problem is that the expansion is arbitrar-
ily fast near t = 0: limt→0 Ṡ = ∞. Since the signal speed is finite (∼< c) the
universe immediately breaks up into regions that have had no time to com-
municate, which is unphysical. The fact that limt→0 Ṡ = ∞ is an inevitable
consequence of (10.1). If ρ �= 0 the ρ-term in (10.1) is ∝ S−3 or S−4 for radi-
ation, and it follows that Ṡ → ∞ for S → 0.
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The problem would disappear if S(t) approaches zero in a different way,
as in Fig. 13.3. The numerator

∫ t

0
dt/S of (13.3), convergent for S ∝ t1/2,

would now become much larger, while the denominator remains unaffected.
The value of the denominator

∫ t0
t

dt/S is difficult to tinker with anyhow, be-
cause the shape of S(t) is fixed once the radiation era is underway. But right
after t = 0 we can’t be so sure anymore. For example, let’s suppose for the
sake of argument that S ∝ t2 near t = 0. The expansion is then initially slow,
limt→0 Ṡ = 0, so that the various regions may interact and have an opportu-
nity to ‘homogenize’. The subsequent expansion becomes increasingly rapid.
And now dho 	 ∞ according to (13.2). Thus we would achieve that the hori-
zon distance dho in the early universe was already much larger than dlk (=
size of our visible universe scaled down to an early time t), Fig. 13.1, right.

We have now discovered the essence of the inflation concept. The scale
factor S(t) is subject to a very rapid accelerating growth just after t = 0, as
in Fig. 13.3. An implication is that the very early universe is extremely small,
much smaller than one would expect on the basis of S ∝ t1/2.

Exercise 13.1: Verify the details of (13.3).

Hint: ϕ0 = [
∫ t

0
dt/S] / [

∫ t0
t

dt/S] = [
∫ S/S0

0
du/(uu̇)] / [

∫ 1

S/S0
du/(uu̇)];

(10.10): u̇ ∝ u−1/2 → ϕ0 = [
√

u ]S/S0
0 / [

√
u ]1S/S0

. Finally S0/S = 1 + z.

Exercise 13.2: The horizon problem in a closed ΩΛ = 0 FRW universe,
Fig. 13.4. Assume that photon F starts at the moment of the Big Bang, and
show that since that time it has travelled a co-ordinate distance

χ =
√

Ωm − 1
∫ u

0

dx

x (Ωmx−1 + 1 − Ωm)1/2

= 2 arcsin
√

S/Sm , (13.4)

where Sm is the value of the scale factor at maximum expansion, Sm/S0 =
Ωm/(Ωm − 1), § 10.2. Prove the following statements (1) complete causal
contact of all parts is only attained in the contraction phase, after maximal
expansion, and in the expansion phase the universe has causally disconnected
parts; (2) after maximal expansion an observer begins to see double images,
diametrically opposite on his sky; (3) A will never see his own image.

Hint: Radial null geodesic from (9.19): (dx0)2 = S2dχ2 or dχ/dt = c/S, then
(10.10); substitute x = Ωmy2/(Ωm − 1) to get rid of Ωm in the integral; (1)
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A

S

F

c

Fig. 13.4. Snapshot of a great circle in a closed ΩΛ = 0 FRW universe, showing the
radial co-ordinate r = sin χ, § 9.3. As time progresses, the circle expands together
with the universe and then contracts again. Object A, located at the origin r = 0,
has emitted photon F at the moment of the Big Bang. The photon returns to A at
the moment of the Big Crunch.

complete causal contact requires that photons emitted by A have covered the
entire universe → χ = π; (2) photons travelling in opposite directions may
reach the same observer as soon as χ > π; (3) A sees his own image at the
moment of the Big Crunch. This shows how fast the expansion really is: in a
closed ΩΛ = 0 universe photons just manage to make one round trip!

13.2 Evolution of a universe with a scalar field

We have seen that the horizon problem may be solved if the scale factor
S(t) behaves differently near t = 0. In the 80ies of the last century it was
discovered that scalar fields that may have been present in the early universe
can do the magical trick. Scalar or Higgs fields had originally been used in
particle physics because they could endow mass to the quanta of an otherwise
massless vector field, without destroying the possibility of renormalization.
Scalar fields have been very popular since that time, and it was only a natural
development to investigate their role in cosmology. The bosons in question are
believed to be the hypothetical supermassive X-bosons (∼ 1015 GeV) that
occur in Grand Unified Theories, see § 12.2. Such particles may be abundant
just after the Big Bang, and play a role in many inflation models. In practice
the scalar field is just postulated and one doesn’t worry too much about its
place in the grander scheme of things. We shall now derive the equations of
motion for the simplest possible model: one scalar field, minimally coupled
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to gravity. We start from the relativistic expression of the energy E of a free
particle:

E2 = m2c4 + (pc)2 , (13.5)

where p is the particle’s momentum. This is quantized in the usual way by
replacing E and p by operators E → i�∂/∂t and p → −i�∇:

−�
2 ∂2ψ

∂t2
= m2c4ψ − �

2c2∇2ψ . (13.6)

This is the Klein-Gordon equation for a field ψ of bosons with spin zero and
rest mass m. After some cleaning up:

(� + µ2)ψ = 0 ; µ =
mc

�
. (13.7)

But (13.7) is is not an acceptable equation because �ψ = ηµνψ,µν is not an
invariant scalar. The simplest generalization is: ηµνψ,µν → gµνψ:µ:ν . So, we
replace (13.7) by

gµνψ:µ:ν + µ2ψ = 0 , (13.8)

which is properly invariant. This type of reasoning, incidentally, is another
example of how the principle of general covariance is used in practise.

The explicit expression for gµνψ:µ:ν may be found with the help of (2.47):
ψ:µ = ψ,µ, and then (2.43):

gµν(ψ,µν − Γα
µνψ,α) + µ2ψ = 0 . (13.9)

We show later that we may restrict ourselves to ψ,i = 0, i.e. to homogeneous
ψ:

g00ψ,00 − gµνΓ0
µνψ,0 + µ2ψ = 0 . (13.10)

But g00 = 1 and from (9.31): gµνΓ0
µν = gikΓ0

ik = −(S′/S)gikgik = −3Ṡ/cS:

ψ,00 +
3Ṡ

cS
ψ,0 + µ2ψ = 0 . (13.11)

We have landed on familiar territory: ψ evolves as an harmonic oscillator that
is damped by the expansion of the universe.

The field equation is G00 = −(8πG/c2)T00, or, with (9.34):(
Ṡ

S

)2

+
kc2

S2
=

8πG

3
T00 . (13.12)

T00 is the total energy of the harmonic oscillator:3

3 Landau, L.D. and Lifshitz, E.M.:1971, Relativistic Quantum Theory, Pergamon
Press, § 12.
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T00 = 1
2 (ψ,0

2 + µ2ψ2) . (13.13)

Actually there is another term 1
2 |∇ψ|2 on the right hand side of (13.13) which

is omitted because of the assumed homogeneity of ψ. The equation for S
becomes: (

Ṡ

S

)2

+
kc2

S2
=

4πG

3
(ψ,0

2 + µ2ψ2) . (13.14)

We now have a closed set of equations (13.11) and (13.14) for S and ψ.

Before we proceed it is useful to write these equations in dimensionless
form, with the help of Planck units. The Planck mass Mp is the mass of
a black hole whose Schwarzschild radius 2GM/c2 and Compton wavelength
�/Mc are equal:

Mp =
(

�c

G

)1/2

	 2.2 × 10−5 g , (13.15)

a macroscopic mass of 22 µg, and Mpc2 	 1.2 × 1019 GeV. The Compton
wavelength �/Mpc of this hole is the Planck length Lp :

Lp =
�

Mpc
=

(
�G

c3

)1/2

	 1.6 × 10−33 cm . (13.16)

The Planck density ρp ≡ Mp/Lp
3 and the Planck time tp ≡ Lp/c are

ρp =
c5

�G2
= Mp

4
( c

�

)3

	 5.2 × 1093 g cm−3 ; (13.17)

tp =
(

�G

c5

)1/2

= M−1
p

�

c2
	 5.4 × 10−44 s . (13.18)

We now substitute G = �c/Mp
2 in (13.14) and then � = c = 1 in (13.11) and

(13.14):

ψ̈ + 3Hψ̇ + m2ψ = 0 ; (13.19)

H2 +
k

S2
=

4π

3Mp
2

(ψ̇2 + m2ψ2) , (13.20)

with H = Ṡ/S and ˙ = d/dt. The original units may be restored as follows.
From (13.16) − (13.18) we see that [length] = [time] = [mass]−1; [density]
= [mass]4. The dimension of ψ follows by requiring that c2T00 is the en-
ergy density of the field → [(µcψ)2] = [ρc2] → [ψ] = [mass]. This means
that if we compute a time, we may for example find that t = m−1. Since
Mptp = 1 according to (13.18), t = m−1Mptp = Mp/m in units of tp, or
t = (Mp/m) ·Mp

−1(�/c2) = �/mc2 sec. Analogous results may be derived for
other quantities.
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Fig. 13.5. In the chaotic inflation scenario a quantum fluctuation of characteristic
size Lp in the metric of an existing spacetime, casually referred to as a ‘quantum
bubble’, will inflate to huge proportions in about 10−34 s, if the energy it may con-
tain on the basis of the uncertainty relation resides in one scalar field. During the
subsequent reheating phase, the energy of the scalar field is converted into parti-
cles, the quark-gluon plasma, marking the beginning of the hot Big Bang around
t ∼ 10−30 s (depending on the inflation scenario). Our visible universe is a minute
fraction of the original bubble, and therefore homogeneous and flat.

Equations (13.19) and (13.20) do not allow for interaction with other fields,
because we assumed a free particle. The equations become more complicated
when these interactions are included, and their mathematical form becomes
strongly dependent on the details of the particle physics at the highest en-
ergies, about which little is known. This is where the appeal of the chaotic
inflation model proposed by Linde comes in. Chaotic inflation assumes that
the universe is born out of a quantum fluctuation in which the energy in one
scalar field ψ dominates over all other fields. The evolution is then presumably
well described by (13.19) and (13.20) for a free field.

13.3 Chaotic inflation

We start off from an existing spacetime. On a microscopic scale there are
abundant quantum fluctuations in the metric, Fig. 13.5. A causally connected
part (a ‘quantum bubble’) has a characteristic size Lp = ctp and contains
a characteristic energy Mpc2 that is restricted by Heisenberg’s uncertainty
relation to Mpc2 · tp ∼ �. This energy is more or less equally divided among
various fields. These regions are not of interest to us because they do not
inflate. We concentrate on one of those rare places and times where one
scalar field dominates over all others, and analyse its evolution with (13.19)
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and (13.20). Because almost all energy resides in the scalar field we get
T00 = 1

2 (ψ̇2 + m2ψ2) ∼ ρp = Mp
4 (� = c = 1). Since the ignored term

1
2 |∇ψ|2 in (13.13) may also not be larger than ∼ Mp

4, we infer a restriction
on the typical variation δψ of ψ:

δψ ∼ |∇ψ|Lp ≤ Mp
2M−1

p = Mp . (13.21)

But T00 	 m2ψ2 ∼ Mp
4 (we shall show later that ψ̇ � mψ), so that

ψ ∼ Mp
2

m
;

δψ

ψ
∼ m

Mp
� 1 , (13.22)

since mc2 ∼ 1015 GeV if m is the X-boson, while Mpc2 ∼ 1019 GeV. We
conclude that the assumption that all energy resides in the scalar field im-
plies its near-homogeneity. It is therefore reasonable to put ∇ψ = 0 in the
derivation of (13.19) and (13.20), and we take (13.22) as the initial condition
of ψ at t = tp. According to (13.19), ψ is a harmonic oscillator with frequency
m and damping 3H/2. For weak damping (H � m) ψ will oscillate. But the
damping turns out to be strong (H � m), and ψ approaches zero only very
slowly. In that case the inertia term ψ̈ can be neglected. We assume that:

H � m and ψ̇ � mψ . (13.23)

Furthermore we omit the curvature k/S2 term. These approximations will be
justified later. We are then left with:

3Hψ̇ = −m2ψ ; (13.24)

H2 =
4πm2

3Mp
2

ψ2 . (13.25)

The nature of the solution is rather obvious. Relation (13.25) says that H (:) ψ,
and then (13.24) says that ψ̇ is a negative constant which turns out to be
small, so that ψ is also approximately constant. Hence, according to (13.25),
H = Ṡ/S ∼ constant, i.e. exponential expansion. As ψ slowly decreases, so
does H until the weak damping limit is attained. The explicit solution for
the strong damping case is obtained by solving (13.24) and (13.25) for ψ̇ and
H = Ṡ/S:

ψ̇ = − mMp√
12π

; (13.26)

Ṡ

S
= − 4π

Mp
2

ψψ̇ . (13.27)

These equations may be integrated:
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ψ(t) = ψp − mMpt√
12π

; (13.28)

S(t) = Sp exp
[

2π

Mp
2

{
ψp

2 − ψ(t)2
}]

, (13.29)

where ψp = ψ(tp) 	 Mp
2/m and Sp = S(tp) 	 Lp.

An exercise invites the reader to show that the approximations (13.23)
are valid as long as ψ � Mp/

√
3π. The range of validity of the solution is

therefore

Mp/
√

3π < ψ ∼<
Mp

2

m
. (13.30)

With the help of (13.28) the exponent in (13.29) may be expanded as (2π/M2
p)·

[ψp
2−(ψp+ψ̇t)2] 	 (2π/M2

p)(−2ψ̇ψpt) =
√

4π/3 Mpt, as long as t � −ψp/ψ̇.
The expansion is therefore exponential,

S(t) = Sp exp(Hpt) ; Hp =

√
4π

3
Mp 	 2Mp , (13.31)

as long as t � te where

te = − ψp

ψ̇
=

√
12π

Mp

m2
=

√
12π

(
Mp

m

)2

tp . (13.32)

For large t, S(t) reaches the final value

Se

Sp
∼ exp

{
2π

Mp
2

ψp
2

}
∼ exp

{
2π

(
Mp

m

)2}
. (13.33)

The numerical value of (13.33) is very uncertain because the boson mass m
is unknown. But since m � Mp it is clear that the scale factor S is blown
up by a huge amount, possibly as large as ∼ 10(108) if mc2 ∼ 1015 GeV. This
number is so large that even astronomers, not known to be easily impressed
by large numbers, are baffled.

And it all happens in a very brief time span. The time when the inflation
terminates can be estimated by requiring ψ(te) = 0 in (13.28), and this leads
again to (13.32). For m/Mp = 10−4 we have te ∼ 6 × 108 tp ∼ 3 × 10−35 s.
When ψ becomes of the order of Mp/

√
3π it is no longer possible to ignore ψ̈,

and ψ(t) becomes oscillatory. This is the reheating phase, during which the
energy in the scalar field is converted into matter, which is not included in the
equations. The subsequent expansion of the universe to its present-day size,
by a factor of ∼ 1027, is relatively modest with respect to (13.33).
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Fig. 13.6. Numerical solution of eqs. (13.34) - (13.36). Top: scale factor and field
amplitude. Bottom: the energy density of the radiation and the total energy density
in units of the Planck energy density ρpc2. Note that H ∝ (ρtot)

1/2. All logarithms
are base 10. Parameters: m/Mp = 0.01, γ = 0.01 m, ψp = M2

p/m, timestep ∆t =
0.25 tp. The equations require a small timestep because they are stiff, and we did
not bother to use a special integration routine. This renders integration for more
realistic parameters such as m/Mp = 10−4 difficult.
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Toy model

To demonstrate the inflation and reheating in some detail we add an equation
for relativistic matter (that is, radiation) to eqs. (13.19) and (13.20):

ψ̈ + (3H + γ)ψ̇ + m2ψ = 0 , (13.34)

H2 =
8π

3Mp
2

( 1
2 ψ̇2 + 1

2m2ψ2 + ρ) , (13.35)

ρ̇ + 4Hρ = γψ̇2 . (13.36)

These equations are obtained as follows. The interaction of the scalar field with
other fields is modelled by a damping term γψ̇ in (13.34). This interaction is
initially not important since H is large, but as ψ and H decrease, the damping
of ψ by coupling with matter fields becomes more important than expansion.
In physical terms, the energy in the scalar field is converted into particles,
for example X-bosons, that subsequently decay into quarks and leptons. The
matter has an energy density ρ, which has been added to the total energy
density in (13.35). The curvature term k/S2 has been dropped as it is soon
unimportant. For γ = 0, (13.36) says that ρS4 is constant (relativistic matter).
The choice γψ̇2 for the matter source term is motivated by the fact that
it makes the interaction between matter and scalar field energy-conserving.
We verify that by computing the time derivative of the total energy density
ρtot = 1

2 ψ̇2 + 1
2m2ψ2 + ρ :

d
dt

(
1
2 ψ̇2 + 1

2m2ψ2 + ρ
)

= −H(3ψ̇2 + 4ρ) , (13.37)

which is independent of the rate γ at which energy is exchanged between ψ
and ρ. The conversion of the scalar field into matter proceeds without loss of
energy, since ρtot decreases only insofar expansion dilutes the energy density
of the scalar field and the matter.

These phenomenological equations nicely illustrate the key features of
inflation and reheating, see Fig. 13.6. There is a huge expansion as long as
the scalar field dominates. In this phase the matter evolves quasistationary,
ρ 	 γψ̇2/4H (ρ̇ 	 0), and is energetically unimportant. The end of the infla-
tion phase is correctly predicted by (13.32), and the simulations confirm that
the scalar field has by then collapsed to a value ψ ∼ Mp/

√
3π, see (13.30).

The field becomes oscillatory thereafter, with a period ∼ m−1 = (Mp/m)tp,
which is hardly resolved in Fig. 13.6. The expansion continues but slows down
to S ∝ t1/2, which is no longer visible on the logarithmic scale of the figure.
The total expansion factor is well reproduced by relation (13.33). The mat-
ter energy density surges to an estimated peak value of ρ/ρp ∼ γm/12πM2

p
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(without proof), and scales as ρ ∝ S−4 ∝ t−2 soon thereafter: the beginning
of a hot big bang.

Exercise 13.3: Verify that the assumptions in (13.23) are correct as long as
ψ � Mp/

√
3π.

Hint: ψ in (13.19) is a damped harmonic oscillator. As long as the damping
3H/2 is supercritical (i.e. 3H/2 > m) one may neglect ψ̈. With (13.25) →
ψ > Mp/

√
3π; (13.26) → |ψ̇| < mψ.

Exercise 13.4: Prove that during the inflation phase the Hubble constant is
∼ 1061 times larger than it is today.

Hint: Hp ∼ Mp = Mptp/tp = 1/tp and H0 ∼ 1/t0 → Hp/H0 ∼ t0/tp.

Exercise 13.5: Show that the scalar field ψ is equivalent to a density ρ and
a negative pressure p:

ρ = 1
2 ψ̇2 + 1

2m2ψ2 ;

p = 1
2 ψ̇2 − 1

2m2ψ2 .

⎫⎬
⎭ (13.38)

Hint: Set H = Ṡ/S in (13.20), multiply with S2, differentiate, and eliminate
ψ̈ with (13.19):

S̈

S
= − 4π

3Mp
2

(2ψ̇2 − m2ψ2) . (13.39)

Compare with (9.40) → ρ + 3p = 2ψ̇2 − m2ψ2 in Planck units, and ρ from
(13.20) and (9.36); Λ is completely negligible. The pressure is negative on
account of (13.23).

13.4 Discussion

The horizon problem has disappeared because if we compute once more dho

using (13.31) and (13.33) we find, for t � te:

dho = cS

∫ t

0

dt

S
> cSe

∫ te

0

dt

S
	 eHpte

∫ te

0

e−Hptdt
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∼ c

Hp
eHpte ∼ Lp exp

{
2π

(
Mp

m

)2}
, (13.40)

because c/Hp ∼ Lp. After the inflation phase the value of dho is by any mea-
sure enormous. On the other hand, as long as t > te, we know4 that dlk is
at most of the order of ct0. In other words, the inequality dho/dlk � 1 that
caused all the problems has now been reversed to dho/dlk � 1.

Since H is approximately constant while S grows rapidly to huge propor-
tions, the term k/S2 in eq. (13.20) is soon negligible. Inflation thus implies
that the universe is flat. Likewise it is correct to ignore the cosmological con-
stant term Λ/3 in (13.20) as Λ ∼ H2

0 � H2 (in Planck units). Our visible
universe is a tiny fraction of the original quantum fluctuation and is therefore
homogeneous, regardless how inhomogeneous the initial fluctuation was.

Current status

The inflation concept was originally introduced by Guth5 in 1981, and
presently there are a number of different models on the market.6 Because
of its many achievements inflation has become a paradigm in cosmology that
is likely to stay – even though the nature of the scalar field that does the mag-
ical trick is unknown. To this comes that all models have loose ends, and none
is wholly accepted. For example, there is no explanation for the fine-tuning
problem of the cosmological constant Λ. The model expounded here has one
advantage over others: it seems not to depend strongly on the (unknown) de-
tails of the particle physics, although self-interaction of the field is ignored. It
produces an inflation factor much larger than other models do, and also much
larger than is needed (see exercise). On the other hand, the fact that under
certain conditions a quantum fluctuation would inflate may be regarded as an
instability of the vacuum, and it remains to be seen if a complete quantum
theory of gravity permits such a phenomenon. Another serious objection is
the fact that the model uses a semi-classical formulation right after the Planck
time.

What drives it?

The clue is that the energy density of the scalar field is not diluted by ex-
pansion like ordinary radiation (∝ S−4). This very counterintuitive property
is confirmed by eq. (13.37): for ρ = 0 the energy density of the scalar field
decreases as −3Hψ̇2 which is of the order of (m/Mp)2 Planck energy den-
sity ρpc2 per Planck time. In the present context this is very small, so H

4 See Table 11.1; dlk ≡ d.
5 Guth, A.H., Phys. Rev. D 23 (1981) 347.
6 For more information on inflation theory see Börner (1988) Ch. 9; Kolb and

Turner (1990) Ch. 8; and Peacock (1999) Ch. 11.
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remains roughly constant according to (13.35). And that means that expo-
nential expansion continues unabated. Another way of saying this is relation
(13.38): the scalar field is equivalent to a density ρ 	 1

2m2ψ2 and a negative
pressure p 	 − 1

2m2ψ2 since 1
2 ψ̇2 is small. During inflation spacetime behaves

approximately as a vacuum with a large cosmological constant Λ ∝ 1
2m2ψ2,

and we conclude that the initial quantum fluctuation is blown up by the huge
anti-gravity associated with the scalar field. All inflation models have in com-
mon that the inflation takes place very early – after ∼ 10−30 s at most it is
all over. Inflation may therefore be regarded as a physical mechanism that
creates the homogeneous, isotropic, hot, expanding and flat FRW universe
whose existence we took for granted in earlier chapters.

Seed fluctuations

The exponential expansion creates an event horizon. Events further away than
c/H ∼> Lp cannot communicate with the observer, who will experience the
universe during the inflation phase as a kind of black hole turned inside out.
Although this is merely an analogy, there is one consequence that carries
over: the creation of quantum fluctuations in the scalar field, which turn out
to have an r.m.s. amplitude δψ/ψ ∼ m/(Mp

√
3π) per wavelength decade.

These fluctuations in ψ are eventually converted into density fluctuations δρ/ρ
and have the right spectrum to serve as the seeds for structure formation if
m/Mp ∼ 10−4. This is an important reason for believing that the scalar field
of mass m may correspond to the supermassive X-bosons of grand unified
theories.

Energetics

The energetics of inflation is an elusive problem. We start with a total energy
∼ Mpc2 at t = tp and at the end of the reheating we have ∼ S3

e × the
energy density at that time, plus the gravitational energy, which is negative
one would say. However, this is the reasoning of an external observer, § 11.2.
An observer in the universe faces a different situation, as he has to perform
an integration over the past lightcone. A proper calculation is called for, but
then we run into the problem that an invariant definition of the gravitational
energy in a volume does not exist in GR. It does only in the special cases of
asymptotically flat or stationary spacetimes, neither of which applies to the
FRW universe. So, when we make statements about the global energetics of
the expanding universe we cannot be sure to avoid artifacts due to the choice
of the co-ordinates! As a result of these problems no clear answer exists, which
is very unsatisfactory.

Philosophical issues

Speculations on the origin of the universe concern issues that are often im-
possible to verify, which gives them a metaphysical twist where, depending
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Fig. 13.7. Chaotic inflation may take the form of a hierarchical process creating
many interconnected or decoupled universes. Observer W would just notice a small
defect in his spacetime of size ∼ Lp that may or may not disappear again. Our visible
universe is a very small section of spacetime, for instance the space indicated by the
two markers. Since observations beyond the horizon are impossible, we can only
make ‘reasonable’ assumptions about what lies outside (such as the cosmological
principle). This underlines the highly speculative character of ideas such as these.

on the temperament of the author, sometimes pretty wild extrapolations are
made.7 The model treated here is called chaotic inflation because it begins
whenever a sufficiently large quantum fluctuation materializes in spacetime,
and the standard lore about chaotic inflation runs something like this. Sup-
pose that happens close to an observer W . To W such a region would appear
to be a small defect in space – a kind of black hole with radius ∼ Lp, see
Fig. 13.7. Inside, however, the geometry is ‘redefined’ in a drastic manner, as
it contains an entire universe. This idea of inflation being a sudden redefin-
ition of the geometry in a very small patch of spacetime may be helpful. W
may nevertheless hold the defect, and thereby an entire universe in his hand
(where perhaps other students study their cosmology books). The figure is an
attempt to visualize the geometrical structure by letting space ‘bulge out’ into
a flat embedding space, suggesting that one universe is ‘next to’ or ‘below’
another – which is of course not so because the embedding space does not
exist. Our universe may likewise be enclosed inside another spacetime.

7 For example Tegmark, M., Sci. Am. May 2003.
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In this vision creation is a stochastic process that continues forever. Space-
time would have a kind of hierarchical structure without a beginning in time.
Our universe may be one of many, and the constants of nature and therefore
the physics would be different in each universe. The constants of nature in
our universe must have the values they have because we would not exist if
they were much different. This type of reasoning is called the anthropic prin-
ciple, originally introduced by Carter.8 The so-called weak anthropic principle
maintains that what we can expect to observe is restricted by the conditions
necessary for our existence as observers, see Barrow and Tipler (1986) for
more details.

Perhaps the most stunning perspective offered by inflation theory is the
idea that the entire universe as we know it originates from a tiny part of
an already tiny quantum fluctuation. Is this a dazzling show of the power of
scientific reason, or rather a figment of the mind – a modern Tower of Ba-
bel? Don’t say too soon that we shall never know, and recall the example
of Auguste Comte, who argued in earnest in 1835 that it would be forever
impossible to determine the temperature and the internal state of stars.9 And
then of course came spectroscopy.

Exercise 13.6: The solution of the horizon problem requires a minimum
inflation factor of Se/Sp ∼ (t0/tp)(T0/Te) ∼ 106110−28 = 1033 ∼ e76.

Hint: Require that the present horizon distance (about ct0) rescaled to t = tp,
i.e. ct0(Sp/S0), is equal to the horizon size Lp at t = tp; then Se/Sp = (Se/S0)·
(S0/Sp) ∼ (Se/S0)(ct0/Lp) ∼ (T0/Te)(t0/tp) (use T ∝ S−1); estimate Te

from κTe ∼ mc2 → Te ∼ 1028 K. This is a very rough estimate; the energy
of the scalar field at the end of the inflation may not be completely spent on
reheating and then Te is smaller than 1028 K.

Exercise 13.7: Verify that the expansion factor of the universe from the end
of inflation to now is ∼ 1027.

Hint: The scale factor S goes as t1/2 from te ∼ 6 × 108 tp ∼ 3 × 10−35 s to
tmat 	 5.5 × 104 yr (→ expansion factor 2.4 × 1023). Then as t2/3 until now,
14 × 109 yr (expansion factor 4000).

8 Carter, B., in Confrontation of Cosmological Theories with Observational Data,
ed. M.S. Longair (Reidel 1974), p. 291.

9 Comte, A.: 1835, Philosophie Première (cours de philosophie positive), 19e Leçon,
ed. Hermann (Paris 1975).
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B

Useful numbers

Table B.1. Physical and astronomical constants a

electron mass 9.109 × 10−28 g (511.0 keV)
proton mass 1.673 × 10−24 g (938.3 MeV)
neutron mass 1.675 × 10−24 g (939.6 MeV)

electron charge e 4.803 × 10−10 c.g.s. (esu)
speed of light c 2.998 × 1010 cm s−1

Boltzmann constant κ 1.381 × 10−16 erg K−1

radiation constant σ 5.670 × 10−5 erg cm−2 K−4s−1

Planck constant � = h/2π 1.055 × 10−27 g cm2s−1

gravitational constant G 6.674 × 10−8 cm3 g−1s−2

Planck mass Mp = (�c/G)1/2 2.18 × 10−5 g

Planck length Lp = (�G/c3)1/2 1.62 × 10−33 cm

Planck time tp = (�G/c5)1/2 5.39 × 10−44 s
Planck density ρp = c5/�G2 5.16 × 1093 g cm−3

1 AU 1.496 × 1013 cm
1 light year (lyr) 9.461 × 1017 cm
1 parsec (pc) 3.086 × 1018 cm 3.262 lyr

microwave background temperature 2.725 ± 0.002 K
Hubble constant H0 100 h km s−1 Mpc−1 3.24 × 10−18 h s−1

h 0.71 ± 0.04
Hubble time 1/H0 3.09 × 1017h−1 s 9.79 h−1 Gyr
Hubble radius c/H0 9.25 × 1027 h−1 cm 3.00 h−1 Gpc

a http://physics.nist.gov/constants

Table B.2. Sun and Earth

Sun Earth

mass (g) 1.99 × 1033 5.98 × 1027

radius (km) 6.96 × 105 6.37 × 103

Schwarzschild radius 2GM/c2 2.95 km 0.887 cm
luminosity (erg s−1) 3.83 × 1033



C

Euler-Lagrange equations

In GR and other fields one often encounters the following problem. Given a
function L(y1(p), ẏ1(p), y2(p), ẏ2(p), · · ·) ≡ L({yi, ẏi}), where ˙ = d/dp . For
which functions yi(p) is the value of the integral I =

∫ b

a
Ldp an extremum?

This well known problem is handled by considering the difference between the
value of I for a neighbouring function set yi + δyi and the original value of I.
We compute the difference to first order in δyi:

δI =
∫ b

a

L({yi + δyi, ẏi + δẏi}) dp −
∫ b

a

L({yi, ẏi}) dp

	
∫ b

a

(
∂L

∂yi
δyi +

∂L

∂ẏi
δẏi

)
dp , (C.1)

with a summation over double indices i as usual. We have

δẏi = δ
dyi

dp
=

d
dp

δyi . (C.2)

δ and d/dp commute, and that enables us to partially integrate the second
term:

δI 	
∫ b

a

[
∂L

∂yi
− d

dp

(
∂L

∂ẏi

)]
δyi dp . (C.3)

The stock term (∂L/∂ẏi)δyi|ba vanishes because δyi(a) = δyi(b) = 0. The end
points are held fixed. The requirement that I is an extremum implies that
δI = 0 for arbitrary δyi. It follows that

∂L

∂yi
=

d
dp

(
∂L

∂ẏi

)
. (C.4)

These are the famous Euler-Lagrange differential equations from which the
functions yi(p) may be solved. Note that the derivation of (C.4) clearly shows
that ∂L/∂yi and ∂L/∂ẏi should be computed as if yi and ẏi are independent
variables. Note, too, that we obtain the functions for which L is an extremum,
a wider class than the functions for which I is a maximum or minimum.

Example

Let L = y2ẏ+ ẏ2. Then ∂L/∂y = 2yẏ and ∂L/∂ẏ = y2 +2ẏ. After insertion in
(C.4) we get 2yẏ = 2yẏ +2ÿ, or ÿ = 0. Hence

∫ b

a
(y2ẏ + ẏ2) dp has an extremal

value when y(p) is a linear function of p connecting the end points y(a) and
y(b).



D

Pressure of a photon gas

The pressure P is the force per unit area due to photons bouncing, say, off a
reflecting mirror, see Fig. D.1. The force on the surface element dA is P dA,
and this is also equal to the rate of change of momentum of the reflected
photons:

P dA = d momentum/dt

=
∫∫

n(ν)dν · dV

dt
· ∆p · dΩ

4π
. (D.1)

Here n(ν)dν is the number density of photons in a frequency band dν centered
on ν, and dV/dt = c cos θ dA is the volume ‘swept out’ by the photons per
unit time (Fig. D.1); ∆p is the momentum change per photon, and dΩ/4π the
fraction of the solid angle. The integrations are over frequency and solid angle.
If p is the photon’s momentum, its energy is E = pc. It follows that pc = hν or
p = hν/c, and the momentum change equals ∆p = 2px = 2(hν/c) cos θ. The
solid angle element, finally, is dΩ = 2π sin θ dθ. Inserting everything yields

P =
∫

n(ν)hν dν

∫ π/2

0

cos2 θ sin θ dθ = 1
3ε . (D.2)

The first integral is equal to the photon energy density ε and the second inte-
gral equals 1

3 . Note that the energy distribution of the photons is immaterial,
but isotropy is essential.

dV = dA . cdt . cos q

dA

q X

Fig. D.1. The volume dV swept out per unit time by photons impinging on a mirror
under an angle θ.
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The angular power spectrum of the CMB

We derive here three relations from § 11.4. First we consider (11.35), then
(11.36), after which (11.34) is trivial. Write down (11.32) twice and take the
ensemble average:

〈a�m a∗
�′m′〉 =

∫∫
dΩ1dΩ2 Y ∗

�m(n1)Y�′m′(n2) 〈∆T (n1)∆T (n2)〉 . (E.1)

Assuming spherical symmetry, the autocorrelation function 〈∆T (n1)∆T (n2)〉
can only depend on θ12, where cos θ12 = n1 · n2. Accordingly, it should be
possible to expand the autocorrelation function in Legendre polynomials Pn :

〈∆T (n1)∆T (n2)〉 =
∑

n

constnPn(cos θ12) . (E.2)

The addition theorem of the spherical harmonics,

∑
j

Ynj(n1)Y ∗
nj(n2) =

2n + 1
4π

Pn(cos θ12) , (E.3)

allows one to express Pn(cos θ12) in terms of n1 and n2. Insert (E.2) in (E.1)
then make use of (E.3) and rename 4π constn/(2n+1) ≡ Cn. These constants
are the same as those in (11.35). As a result of these operations we find

〈a�m a∗
�′m′〉 =

∑
nj

Cn

∫
dΩ1 Y ∗

�m(n1) Ynj(n1)
∫

dΩ2 Y�′m′(n2)Y ∗
nj(n2)

=
∑
nj

Cn δ�nδmjδ�′nδm′j = C� δ��′δmm′ . (E.4)

In the second line we have twice made use of the orthogonality of the spherical
harmonics: ∫

dΩ Y�mY ∗
�′m′ = δ��′δmm′ . (E.5)

It follows that
〈|a�m|2〉 = C� , (E.6)

which is relation (11.35). It shows that 〈|a�m|2〉 is indeed independent of m.
The next step is that we may now write (E.1) as

C� =
∫∫

dΩ1dΩ2 Y ∗
�m(n1)Y�m(n2) 〈∆T (n1)∆T (n2)〉 . (E.7)
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x

y´z´

y

z

n1 n2

q12

j12

x´

Fig. E.1. The integration over Ω2 in (E.8) is performed first, using spherical co-
ordinates in the x′y′z′-frame at fixed n1. In this frame the co-ordinates of n2 are
θ12, ϕ12. Because the integrand is axially symmetric around the z′-axis we have
∫dΩ2 = 2π sin θ12dθ12, and the result is (E.9). Spherical symmetry renders the
remaining integrand independent of n1, so that ∫dΩ1 produces just a factor 4π.

Summing this relation over m produces a factor 2� + 1 on the left, while on
the right we invoke the addition theorem (E.3):

(2� + 1)C� =
2� + 1

4π

∫∫
dΩ1dΩ2 P�(cos θ12) 〈∆T (n1)∆T (n2)〉 . (E.8)

We now exploit the fact that the integrand depends only on θ12. As explained
in Fig. E.1, the result is

C� = 1
2

∫
dΩ1

∫ π

0

sin θ12 dθ12 P�(cos θ12) ·

〈∆T (n1)∆T (n2)〉 |n1·n2 = cos θ12 (E.9)

≡ 2π

∫ π

0

C(θ)P�(cos θ) sin θ dθ , (E.10)

where we have dropped the index 12. This proves relation (11.36).

Finally, expand C(θ) in Legendre polynomials, C(θ) =
∑

n AnPn(cos θ),
insert that in (E.10) and use the orthogonality of the Legendre polynomials,

∫ 1

−1

Pn(x)Pm(x) dx =
2

2n + 1
δnm , (E.11)

to find that A� = (2� + 1)C�/4π, or C(θ) = (4π)−1
∑

n(2n + 1)CnPn(cos θ),
which is (11.34).
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The position of the maxima

In real life the peak positions are found by processing temperature maps
through (11.32) and (11.35). Here we are forced to follow a simpler approach,
and we employ the angles (10.47) between directions of maximal temperature
difference:

θn 	 ∆
(2n + 1)d

(Ωm + ΩΛ)1/2 . (E.12)

We now focus on the position of the first peak:

θ0 =
∆
d

(Ωm + ΩΛ)1/2 = 1.64 × 103 H0tm (Ωm + ΩΛ)1/2

	 1.12 × 10−2 ∼= 0.65◦ (E.13)

The distance ∆ travelled by the beγ mode at recombination is the horizon
distance 9ctm at recombination, see below (11.20), divided by

√
3, to allow for

a signal speed of c/
√

3. And according to Table 11.1 the distance d to the last
scattering surface at recombination is 	 3.3×10−3ct0 = 3.3×10−3×0.96 c/H0.
The numerical value of θ0 follows by inserting tm = 9.4 × 104 yr, see below
(10.24), and Ωm + ΩΛ = 1.

To estimate the maximum in the angular power spectrum we argue that
according to (11.32) C� will be maximal if the grid of + and − signs laid out
on the sphere by Y�m is commensurate with that of ∆T . There are maximally
2� zeros on the equator, hence 2� θn = 2π. The position of the first peak is
therefore expected at

�0 	 π/θ0 	 277 , (E.14)

while the observations give �0 = 220 ± 1. The origin of the discrepancy is
that we have ignored two important effects that alter the value of ∆ and
therefore of θ0. In the first place we have tacidly assumed that the beγ modes
are free, but in fact they are driven by the gravity perturbation δφ generated
by the dark matter modes. This turns out to enhance their effective speed of
propagation and hence also the value of ∆, by an amount that depends on the
wavelength λ, i.e. on n. In the second place we have assumed that the signal
speed is c/

√
3, but in reality baryon loading reduces the speed, in particular

at late times, and that in turn diminishes ∆. Although the two effects partly
cancel, we cannot hope our result (E.14) to be very accurate.
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models, 189
FRW models

failures, 253
matter-dominated, 192
radiation-dominated, 197
successes, 253

FRW reference model, 194

Galilean transformation, 4
Gamma-ray bursts, 16
gauge bosons, 238
Gauss’s theorem, 51
Gaussian co-ordinates, 176
general covariance, 13

how to use it, 60
geodesic

extremal property, 32
null, 31
timelike, 31

geodesic deviation, 40, 52
geodesic equation, 30
geodesic motion, 46
geodesic precession, 29, 161

and binary pulsar, 163
geometrical distance, 213, 214, 255
geometrical picture, 20, 175, 219

Grand Unified Theories, 243
gravitational deflection of light, 11, 14,

78
gravitational lensing, 17, 82

arcs, 83
Einstein ring, 83
macrolensing, 85
microlensing, 85
of neutron star image, 83, 86

gravitational mass, 10
gravitational redshift, 11, 14, 49, 79

in solar spectrum, 14, 79
of neutron star surface, 106

gravitational time delay, 14, 79
gravitational waves, 16, 133

detectors, 143, 145
dispersion relation, 134
effect on test masses, 136
energy flux density, 140
generation, 138
metric tensor, 135
polarization, 137
quadrupole radiation, 139
TT-gauge, 135

gravity
Newtonian, 10
SR theories, 10
weak, 47, 56

Gravity Probe A, 79
Gravity Probe B, 6, 16, 162, 164

and geodesic precession, 164
and Lense-Thirring effect, 164

hadrons, 238
Hawking radiation, 128

and event horizon, 128
helium synthesis, 247
High mass X-ray binaries, 95, 113
Hipparcos satellite, 81
horizon

event, 114, 223
in cosmology, 220
particle, 115, 220, 223

horizon problem, 221, 254
and causality, 256
in closed universe, 257
origin, 256
remedy, 257

hot dark matter (HDM) models, 207
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Hubble constant, 171
Hubble flow, 171

cold, 171, 185
Hubble radius, 175, 220
Hubble relation, 171, 214

general form, 225
Hubble time, 173, 195
hyperbolic universe, 179

index
contraction, 24
dummy, 24
lowering, 22
raising, 22

inertial frame
global, 4, 11
local, 11, 12

inertial mass, 10
inflation, 17, 60, 195, 221

and cosmological constant, 268
and creation of FRW universe, 268
and density fluctuations, 268
and flatness problem, 267
and horizon problem, 267
and scalar field, 258
basic idea, 257
current status, 267
energetics, 268
equations, 260
first and second phase, 195
loose ends, 267
philosophical issues, 268
what drives it, 267

interferometer detectors, 145
LIGO, 146, 147, 152
LISA, 147, 151, 152
ongoing projects, 152
operational principle, 149
signal on detector, 150
VIRGO, 152

interval, 6
isotropy of universe, 171

Jeans instability, 203

Kamiokande facility, 243
Kepler’s second law, 74
Kerr metric, 125
Klein-Gordon equation, 259

Kruskal-Szekeres co-ordinates, 121

Legendre polynomials, 230
Lense-Thirring effect, 163
lepton era, 243
leptons, 238
leptoquarks

asymmetric decay, 243
light-cone, 7

past, 215
light-element synthesis, 17, 246

and observations, 249
Lorentz gauge, 57
Lorentz transformation, 8

of rest mass density, 54
Low mass X-ray binaries, 95, 113
luminosity distance, 216, 224

Mach’s principle, 13
MACHOs, 86
mass limit

neutron star, 96, 105
white dwarf, 96

mass transfer, 93
matter

definition in cosmology, 189
matter era, 191

models, 217
matter-antimatter asymmetry, 242
maximum mass

neutron stars, 95, 99, 105
white dwarfs, 95

mesons, 238
metric tensor

covariant derivative, 35
experimental determination, 45
for weak field, 58
gravitational waves, 135
in general relativity, 12
in special relativity, 6
Kerr metric, 125
of space, 45
Riemann space, 20
Robertson-Walker metric, 181
Schwarzschild metric, 66, 70

Minkowski spacetime, 3

neutrino
decoupling, 244
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oscillations, 238
neutrino background, 173, 245
neutron, 238

beta-decay, 240, 243, 247
neutron drip, 104
neutron stars, 89

bare mass, 99
binding energy, 100
constant density model, 101
discovery, 15
equation of state, 104
gravitational acceleration, 120
maximum mass, 95, 96, 99, 105
measured mass and radius, 106
minimum radius, 101
physical mass, 99
realistic models, 103

neutron-to-proton ratio, 245
nova, 93
nuclear fusion

in early universe, 237, 246
in stars, 90, 248

nuclear reactions
in early universe, 237
inverse beta-decay, 91

number density of compact objects, 93,
112

Olbers’s paradox, 232
remedy, 233

open universe, 179, 192
orbit classification

in Schwarzschild metric, 74

parallel transport
formal definition, 29
intuitive definition, 27
on a sphere, 39

parameters
of characteristic objects, 49

past light-cone
cyclist analogy, 219
integrations over, 231
shape, 218
volume, 232

perihelium precession, 14, 77, 82
Planck density, 260
Planck length, 113, 260
Planck mass, 260

PLANCK mission, 231
Planck time, 260
planetary nebula, 90
Pound-Rebka-Snider experiment, 12,

49, 79
pressure

degeneracy, 90
dual role, 99
source of gravity, 60, 99, 183

principle
anthropic, 270
cosmological, 2
general covariance, 13, 55, 60, 184,

259
Mach, 13
relativity, 3
strong equivalence, 13, 46
weak equivalence, 10

proper time, 7, 12, 44
minor role in cosmology, 176

proper volume, 51
proton, 238

lifetime, 243
pulsars, 15, 81, 94

X-ray, 95

QPOs, 106
quadrupole moment of the Sun, 78
quality factor, 143
quark-gluon plasma, 240

in laboratory, 241
quarks, 238
quasars, 16, 78, 110, 166, 227
quasi-periodic oscillations (QPOs), 106

radiation
definition in cosmology, 189

radiation era, 197
time evolution, 199

radio astronomy, 14
re-ionization, 199
recombination, 199
redshift, 214

and astronomical jargon, 215
and scale factor, 215
and tired light, 216
not additive, 72, 120
of De Broglie wavelength, 215

reference frame



290 Index

freely falling, 11, 12, 46
global, 3, 10
quasar, 166

reheating
after inflation, 266
in matter era, 199

rest, 44, 174
rest-frame

global, 5, 7
local, 12

Ricci tensor, 38
Robertson-Walker-metric, 182
Schwarzschild metric, 68

Riemann space, 19
definition, 19
embedding, 19, 20

Riemann tensor, 34
and curvature, 36, 37
and tidal forces, 53
in freely falling frame, 47

Robertson-Walker metric, 178
co-ordinates, 178
Einstein tensor, 182
geodesics, 185
Ricci tensor, 182
scale factor, 178

rotating black hole, 125
ergosphere, 127
static limit, 127

rotation
galactic, 112

Sachs-Wolfe effect, 210
scalar (tensor of rank 0), 24, 25
scalar field

and inflation, 258
scale factor, 178

evolution equation, 182
Schwarzschild metric, 70

Einstein tensor, 69
geodesics, 72
orbit classification, 74
orbit equation, 75
Ricci tensor, 68
singularity, 113

Schwarzschild radius, 70
Shapiro effect, 79
sign convention, 6, 38
signature, 6

simultaneity, 4, 5
singularity

in cosmology, 192
of Schwarzschild metric, 113

spacetime
curvature, 11
Minkowski, 3

spherical harmonics, 228
spherical universe, 179
standard candle, 224

type Ia supernovae, 227
stellar evolution, 89

binary systems, 93
main sequence, 89
mass loss, 90, 93
neutrino losses, 92
nova, 93
nuclear fusion, 90
red giant, 90
supernova, 92

stress-energy tensor, 54, 55, 60, 97, 182
of cold dust, 54
of matter, 60
of scalar field, 259
of vacuum, 184

strong equivalence principle, 13, 46
structure formation, 203

and dark matter, 205
imprints on CMB, 209

summation convention, 6, 23
Sunyaev-Zeldovich effect, 227
supernova, 15, 92

type Ia, 93, 227
Supernova Cosmology Project, 227
supernova remnant, 94
supersoft X-ray sources, 93

tangent space
and embedding, 21
base vectors, 21
preferred metric, 21

temperature of universe, 245
tensor

contravariant representation, 24
covariant representation, 24
Einstein, 38
of higher rank, 24
quotient theorem, 25
Ricci, 38
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Riemann, 34
stress-energy, 54, 55
unit, 25

thermal equilibrium
in early universe, 239

Thomas precession, 5, 159
Thomson scattering, 198, 206
tidal forces, 11

and curvature, 53
time dilation, 9
Tolman-Oppenheimer-Volkoff (TOV)

equation, 97
transport of accelerated vector, 155
transverse traceless gauge, 135

ultra-luminous X-ray sources, 112
universe

age, 195, 201
age indicators, 195
closed, 179
evolution, 171
expansion, 171
flat, 178
future development, 196
homogeneity, 174
hyperbolic, 179
isotropy, 171, 174
open, 179
scale model, 218
spherical, 179
temperature, 245
thermal history, 198
visible, 221

Unruh effect, 128

UrQMD, 241

variational calculus, 32, 67
vector, 4

contravariant, 24
covariant, 24
null, 7
spacelike, 7
tensor of rank 1, 24
timelike, 7

virial theorem, 89, 96
visible universe, 221
VLBI, 78, 166
Vulcan, 78

weak equivalence principle, 10
white dwarfs, 89, 90

maximum mass, 95, 96
white hole, 123
Wilkinson Microwave Anisotropy Probe

(WMAP), 17, 170, 228
WIMPs (weakly interacting massive

particles), 170
world model

geocentric, 2
Greek, 1
heliocentric, 2
Hindu, 1
Ptolemy’s, 3

worldline, 3
wormhole, 66

X-boson, 243, 258
X-ray astronomy, 14
X-ray binaries, 14, 95, 105, 106, 112




